Base Model für CITT erstellt, PTM Dortmund ergänzt, Tests hinzugefügt

This commit is contained in:
Markus Clauß
2023-02-28 13:56:11 +01:00
parent b248a7e9b1
commit e861dbf10e
17 changed files with 917 additions and 103 deletions

180
.gitignore vendored Normal file
View File

@@ -0,0 +1,180 @@
temp
.DS_Store
# ---> Python
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# ---> VisualStudioCode
.vscode/*
!.vscode/settings.json
!.vscode/tasks.json
!.vscode/launch.json
!.vscode/extensions.json
!.vscode/*.code-snippets
# Local History for Visual Studio Code
.history/
# Built Visual Studio Code Extensions
*.vsix

4
debug.csv Normal file
View File

@@ -0,0 +1,4 @@
,fit_F_amp,fit_F_freq,fit_F_phase,fit_F_offset,fit_F_slope,fit_F_r2,fit_F_max,fit_F_min,f,sigma,fit_s_hor_sum_amp,fit_s_hor_sum_freq,fit_s_hor_sum_phase,fit_s_hor_sum_offset,fit_s_hor_sum_slope,fit_s_hor_sum_r2,fit_s_hor_sum_max,fit_s_hor_sum_min,fit_s_hor_1_amp,fit_s_hor_1_freq,fit_s_hor_1_phase,fit_s_hor_1_offset,fit_s_hor_1_slope,fit_s_hor_1_r2,fit_s_hor_1_max,fit_s_hor_1_min,fit_s_hor_2_amp,fit_s_hor_2_freq,fit_s_hor_2_phase,fit_s_hor_2_offset,fit_s_hor_2_slope,fit_s_hor_2_r2,fit_s_hor_2_max,fit_s_hor_2_min,nu,E
0,1162.037522728264,0.09999816445250176,3.2731742438169205,1657.4959341169797,0.022890975975805593,0.9999709812370754,2822.8786686693848,498.4860405788809,0.1,0.2,0.004904662057765795,0.09994473426198426,3.274570732678786,0.004472897149678457,3.4796345898322193e-06,0.9995438125784065,0.009632119781608398,-0.00042915385165576136,0.0022048443407161134,0.0999473113711256,3.2789165848392394,0.002036487114427019,1.317283541472095e-06,0.9992245191638016,0.0043773692868893654,-0.00022888205421645047,0.0026998634649033275,0.0999425971739857,3.271026693390654,0.00243640933189622,2.1623427295265008e-06,0.9993713553565571,0.005254750494719032,-0.0002479555587344695,0.2983926664681502,2260.236445571626
1,1163.9861551163267,0.29999672326752724,3.271466866301432,1657.5773060905333,0.023592068619978698,0.999977491807627,2827.1702071859427,492.85935674606014,0.30003,0.2,0.004904630239776472,0.30002953724325576,3.261420279897325,0.004476978416102744,2.2128929628375675e-05,0.9997651921759285,0.009765634313234614,-0.0004482273561737665,0.0021960586065051407,0.300085988714776,3.2617587973425652,0.0020390391186955238,8.035203621628222e-06,0.9992996273163816,0.004420284672054908,-0.0002098085496983204,0.0027085993503841803,0.29998369085814713,3.2611491963027257,0.002437939646841411,1.4093566880537998e-05,0.9995179610005985,0.005354886393438715,-0.0002384188064754461,0.2983926664681502,2264.0413462626584
2,1173.2940951101361,3.0019781539143713,3.1127799064755783,1652.6775323274487,2.2793532011736803,0.9997118511163391,2828.2192499344346,494.76670719786375,3.003,0.2,0.004927618845400971,3.0012837674744888,3.1051127487990566,0.004715737141843021,-1.2305236334063097e-05,0.998488708969846,0.009899148844860886,-0.0004005435948787328,0.0022065238872148044,3.0014146858816817,3.110359353742398,0.0021183309358349563,-8.842607057128579e-06,0.9965020191798836,0.004558567579810768,-0.00018119829292129186,0.002721172122260612,3.0011630113467382,3.100932209486545,0.00259739494570079,-3.4648940648246214e-06,0.9979287207765057,0.0054359487876403795,-0.000257492310993479,0.2983926664681502,2271.499199111919
1 fit_F_amp fit_F_freq fit_F_phase fit_F_offset fit_F_slope fit_F_r2 fit_F_max fit_F_min f sigma fit_s_hor_sum_amp fit_s_hor_sum_freq fit_s_hor_sum_phase fit_s_hor_sum_offset fit_s_hor_sum_slope fit_s_hor_sum_r2 fit_s_hor_sum_max fit_s_hor_sum_min fit_s_hor_1_amp fit_s_hor_1_freq fit_s_hor_1_phase fit_s_hor_1_offset fit_s_hor_1_slope fit_s_hor_1_r2 fit_s_hor_1_max fit_s_hor_1_min fit_s_hor_2_amp fit_s_hor_2_freq fit_s_hor_2_phase fit_s_hor_2_offset fit_s_hor_2_slope fit_s_hor_2_r2 fit_s_hor_2_max fit_s_hor_2_min nu E
2 0 1162.037522728264 0.09999816445250176 3.2731742438169205 1657.4959341169797 0.022890975975805593 0.9999709812370754 2822.8786686693848 498.4860405788809 0.1 0.2 0.004904662057765795 0.09994473426198426 3.274570732678786 0.004472897149678457 3.4796345898322193e-06 0.9995438125784065 0.009632119781608398 -0.00042915385165576136 0.0022048443407161134 0.0999473113711256 3.2789165848392394 0.002036487114427019 1.317283541472095e-06 0.9992245191638016 0.0043773692868893654 -0.00022888205421645047 0.0026998634649033275 0.0999425971739857 3.271026693390654 0.00243640933189622 2.1623427295265008e-06 0.9993713553565571 0.005254750494719032 -0.0002479555587344695 0.2983926664681502 2260.236445571626
3 1 1163.9861551163267 0.29999672326752724 3.271466866301432 1657.5773060905333 0.023592068619978698 0.999977491807627 2827.1702071859427 492.85935674606014 0.30003 0.2 0.004904630239776472 0.30002953724325576 3.261420279897325 0.004476978416102744 2.2128929628375675e-05 0.9997651921759285 0.009765634313234614 -0.0004482273561737665 0.0021960586065051407 0.300085988714776 3.2617587973425652 0.0020390391186955238 8.035203621628222e-06 0.9992996273163816 0.004420284672054908 -0.0002098085496983204 0.0027085993503841803 0.29998369085814713 3.2611491963027257 0.002437939646841411 1.4093566880537998e-05 0.9995179610005985 0.005354886393438715 -0.0002384188064754461 0.2983926664681502 2264.0413462626584
4 2 1173.2940951101361 3.0019781539143713 3.1127799064755783 1652.6775323274487 2.2793532011736803 0.9997118511163391 2828.2192499344346 494.76670719786375 3.003 0.2 0.004927618845400971 3.0012837674744888 3.1051127487990566 0.004715737141843021 -1.2305236334063097e-05 0.998488708969846 0.009899148844860886 -0.0004005435948787328 0.0022065238872148044 3.0014146858816817 3.110359353742398 0.0021183309358349563 -8.842607057128579e-06 0.9965020191798836 0.004558567579810768 -0.00018119829292129186 0.002721172122260612 3.0011630113467382 3.100932209486545 0.00259739494570079 -3.4648940648246214e-06 0.9979287207765057 0.0054359487876403795 -0.000257492310993479 0.2983926664681502 2271.499199111919

View File

@@ -1,4 +1,5 @@
# main __init__.py
from .analysis import *
from .functions import *
from .helper import *
from .labtest import *

View File

@@ -0,0 +1 @@
from .citt import *

View File

@@ -0,0 +1,16 @@
import numpy as np
def stiffness_tp26(T, f, Emax, Emin, phi, z0, z1, T0=20.0):
alphaT = np.exp(phi * ((1 / (T + 273.15)) - (1 / (T0 + 273.15))))
x = np.log(f * alphaT) / np.log(10)
E = Emin + (Emax - Emin) / (1 + np.exp(z0 * x + z1))
return E
def calc_nu(T):
#TODO: Prüfen ob Formel stimmt!
nu = 0.15 + (0.35) / (1 + np.exp(3.1849 - 0.04233 * (9 / 5 * T + 32)))
return nu

View File

@@ -1,6 +1,8 @@
from .filehandling import read_file_to_bytesio
from .filehasher import calc_hash_of_bytes
from .minio import get_minio_client_archive, get_minio_client_processing
__all__ = ['get_minio_client_archive', 'get_minio_client_processing',
__all__ = ['read_file_to_bytesio',
'get_minio_client_archive', 'get_minio_client_processing',
'calc_hash_of_bytes'
]

View File

@@ -0,0 +1,12 @@
import logging
from io import BytesIO
logger = logging.getLogger(__name__)
def read_file_to_bytesio(filename: str):
with open(filename, "rb") as fh:
buf = BytesIO(fh.read())
return buf

View File

@@ -1,90 +1,404 @@
# coding: utf-8
import io
import logging
import numpy as np
import pandas as pd
from paveit.analysis import fit_cos
from paveit.functions import calc_nu
from paveit.helper import calc_hash_of_bytes, get_minio_client_processing
from worker import app, logger
class DataSineLoad():
"""
Base class for lab tests with sine load
"""
def __init__(self, filename:str , metadata: dict):
def __init__(self,
filename: str,
metadata: dict,
archive: bool = True,
debug: bool = False,
data: None | io.BytesIO = None):
self.filename = filename
self.metadata = metadata
if isinstance(data, io.BytesIO):
self.data = data
self.archive_data = archive
self.debug = debug
self._logger = logging.getLogger(__name__)
self._logger.info(
f'filename s3: {self.filename}, metadata: {self.metadata}')
self._pre_run()
def _set_parameter(self):
self.split_data_based_on_parameter = ['T', 'sigma', 'f']
self.col_as_int = ['N']
self.col_as_float = ['T', 'F', 's_piston', 's_hor_1', 'f', 's_hor_1', 's_hor_2']
self.val_col_names = ['time', 'T', 'f', 'sigma', 'N', 'F', 's_hor_1', 's_hor_2']
self._logger = logger
self._logger.info(f'filename s3: {self.filename}, metadata: {self.metadata}')
self.columns_analyse = ['F','s_hor_sum','s_hor_1','s_hor_2','s_piston']
# Header names after standardization; check if exists
self.val_header_names = ['speciment_height', 'speciment_diameter']
self.number_of_load_cycles_for_analysis = 5
self.meta_names_of_parameter = {
'sigma': ['Max. Spannung']
} #list of names
self.data_column_names = {
'time': ['Time Series'],
'F': ['Load Series'],
's_hor_1': ['LVDT1 Series'],
's_hor_2': ['LVDT2 Series'],
}
def update_parameter():
""" update standard prameter from function self._set_parameter()"""
pass
def _define_units(self):
self.unit_s = 1 #mm
self.unit_F = 1 #N
self.unit_t = 1 / 1000. #s
def _connect_to_s3(self):
self._logger.info('connect to db')
self.__minioClient = get_minio_client_processing()
def _read_from_s3_to_bytesio(self):
self._logger.info('read bytes')
try:
self._connect_to_s3()
response = self.__minioClient.get_object('processing', self.filename)
self.data = response.data
response = self.__minioClient.get_object('processing',
self.filename)
self.data = response.data
finally:
response.close()
response.release_conn()
self.data = io.BytesIO(self.data)
def _calc_hash_of_bytesio(self):
self.filehash = calc_hash_of_bytes(self.data)
self.data.seek(0)
self._logger.debug(f'Hash of file: {self.filehash}')
def _process_data(self):
""" convert self.data (BytesIO) to pandas.DataFrame, update
self.metadata with informations from file """
self._logger.debug('convert bytes to pandas.DataFrame')
encoding = 'utf-8'
self.data = pd.read_csv(self.data, encoding=encoding)
def _standardize_data(self):
colnames = list(self.data.columns)
for par, names in self.data_column_names.items():
for name in names:
colnames = [sub.replace(name, par) for sub in colnames]
self.data.columns = colnames
print(self.data.head(5))
def _bytes_to_df(self):
self._logger.debug('convert bytes to pandas.DataFrame')
encoding='utf-8'
self.df = pd.read_csv(self.data, encoding=encoding)
def _standardize_meta(self):
for par, names in self.meta_names_of_parameter.items():
for name in names:
if name in self.metadata:
self.metadata[par] = self.metadata[name]
self.metadata.pop(name)
break
def _validate_data(self):
def _calc(self):
self._logger.debug('calc data')
return self.df.mean().mean()
for name in self.val_col_names:
if not name in self.data.columns:
raise
def _validate_meta(self):
for name in self.val_header_names:
if not name in self.metadata:
raise
def _post_apply_units(self):
for col in ['s_hor_sum', 's_hor_1', 's_hor_2']:
if col in self.data.columns:
self.data[col] = self.data[col].mul(self.unit_s)
for col in ['F']:
self.data[col] = self.data[col].mul(self.unit_F)
for col in ['time']:
self.data[col] = self.data[col].mul(self.unit_t)
return True
def _post_select_importent_columns(self):
# TODO: add more columns, check datamodel
self.data = self.data[self.val_col_names]
def _post_calc_missiong_values(self):
cols = self.data.columns
if not 's_hor_sum' in cols:
self.data['s_hor_sum'] = self.data[['s_hor_1',
's_hor_2']].sum(axis=1)
def _post_opt_data(self):
#set dtypes:
for col in self.col_as_int:
self.data[col] = self.data[col].astype('int')
for col in self.col_as_float:
try:
self.data[col] = self.data[col].astype('float')
except:
pass
#set index
self.data = self.data.set_index('time')
return True
def _fit_split_data(self):
data_gp = self.data.groupby(self.split_data_based_on_parameter)
data_list = []
for idx, d in data_gp:
idx_diff = np.diff(d.index)
dt_mean = idx_diff.mean()
gaps = idx_diff > (4 * dt_mean)
has_gaps = any(gaps)
if has_gaps == False:
data_list.append(d)
else:
#FIX: GAP FINDING
data_list.append(d)
"""
print('has gaps')
print(gaps)
idx_gaps = (np.where(gaps)[0] - 1)[0]
print(idx_gaps)
data_list.append(d.iloc[0:idx_gaps])
"""
#add self.
if len(data_list) == 0:
self.num_tests = 0
self.data = data_list[0]
else:
self.num_tests = len(data_list)
self.data = data_list
#break
def _fit_select_data(self):
"""
select N load cycles from original data
(a): Based on window of TP-Asphalt
(b) last N cycles
"""
def sel_df(df, num=5):
N = df['N'].unique()
freq = float(df['f'].unique()[0])
# define cycles to select
if freq == 10.0:
Nfrom = 98
Nto = 103
elif freq == 5.0:
Nfrom = 93
Nto = 97
elif freq == 3.0:
Nfrom = 43
Nto = 47
elif freq == 1.0:
Nfrom = 13
Nto = 17
elif freq == 0.3:
Nfrom = 8
Nto = 12
elif freq == 0.1:
Nfrom = 3
Nto = 7
else:
Nfrom = None
Nto = None
# Fall 1: nicht alle LW in Datei
if (max(N) < Nto) & (len(N) >= num):
df_sel = df[(df['N'] >= N[-num]) & (df['N'] <= N[-1])]
# Fall 2:
else:
if Nfrom != None:
if len(N) > Nto - Nfrom:
df_sel = df[(df['N'] >= Nfrom) & (df['N'] <= Nto)]
return df_sel
if not isinstance(self.data, list):
if self.number_of_load_cycles_for_analysis > 1:
df_sel = [
sel_df(self.data,
num=self.number_of_load_cycles_for_analysis)
]
else:
df_sel = [self.data]
else:
df_sel = []
for d in self.data:
if self.number_of_load_cycles_for_analysis > 1:
d_sel = sel_df(d,num=self.number_of_load_cycles_for_analysis)
else:
d_sel = d
df_sel.append(d_sel)
# replace data
self.data = df_sel
def _calc(self):
print(len(self.data))
self.fit = []
for idx_data, data in enumerate(self.data):
if data is None: continue
if len(data) < 10: continue
data.index = data.index - data.index[0]
res_temp = {}
x = data.index.values
freq = np.round(float(data['f'].unique()),2)
sigma = float(data['sigma'].unique())
temperature = float(data['T'].unique())
for idxcol, col in enumerate(self.columns_analyse):
if not col in data.columns: continue
y = data[col].values
res = fit_cos(x,y, freq=freq)
for key, value in res.items():
res_temp[f'fit_{col}_{key}'] = value
res_temp[f'fit_{col}_max'] = max(y)
res_temp[f'fit_{col}_min'] = min(y)
res_temp['f'] = freq
res_temp['sigma'] = sigma
res_temp['T'] = temperature
## Stiffness
deltaF = res_temp['fit_F_amp']
nu = calc_nu(temperature)
res_temp['nu'] = nu
h = float(self.metadata['speciment_height'])
deltaU = res_temp['fit_s_hor_sum_amp']
res_temp['E'] = (deltaF * (0.274 + nu)) / (h * deltaU)
self.fit.append(res_temp)
self.fit = pd.DataFrame.from_records(self.fit)
self.fit = self.fit.set_index(['T', 'f', 'sigma'])
print(self.fit)
def _archive_binary_data(self):
self._logger.debug('send file to archive')
app.send_task('ArchiveFile', args=[self.filename,
self.metadata,
self.filehash,
'org',
'citt'
],
queue='archive'
)
self._logger.debug('send file to archive')
app.send_task(
'ArchiveFile',
args=[self.filename, self.metadata, self.filehash, 'org', 'citt'],
queue='archive')
def _pre_run(self):
if not hasattr(self, 'data'):
self._read_from_s3_to_bytesio()
self._calc_hash_of_bytesio()
self._set_parameter()
self.update_parameter()
self._define_units()
def run(self):
self._logger.info('run task')
self._read_from_s3_to_bytesio()
self._calc_hash_of_bytesio()
self._bytes_to_df()
res = self._calc()
self._logger.debug(f'results: {res}')
self._archive_binary_data()
return res
self._process_data()
self._standardize_data()
self._standardize_meta()
self._validate_data()
self._validate_meta()
self._post_select_importent_columns()
self._post_apply_units()
self._post_calc_missiong_values()
self._post_opt_data()
self._fit_split_data()
self._fit_select_data()
self._calc()
#self._logger.debug(f'results: {res}')
#if self.archive_data:
# self._archive_binary_data()
#return res

View File

@@ -5,6 +5,7 @@ from csv import reader
import numpy as np
import pandas as pd
from paveit.labtest import DataSineLoad
from torch import isin
class CITTBase(DataSineLoad):
@@ -15,9 +16,9 @@ class CITT_KIT(DataSineLoad):
def _calc(self):
return (self.df.mean().mean(), self.df.max().max())
def _bytes_to_df(self):
def _process_data(self):
logger.debug('convert bytes to pandas.DataFrame')
self.data.seek(0)
with io.TextIOWrapper(self.data, encoding='latin-1') as read_obj:
csv_reader = reader(read_obj, delimiter=';')
@@ -93,29 +94,50 @@ class CITT_KIT(DataSineLoad):
#res = res.sort_values(['f', 'ZEIT'])
#define in class
self.df = res.reset_index()
class CITT_PTMDortmund(DataSineLoad):
def _calc(self):
return (self.df.mean().mean(), self.df.max().max())
self.data = res.reset_index()
def _bytes_to_df(self):
class CITT_PTMDortmund(DataSineLoad):
def _define_units(self):
self.unit_s = 1 #mm
self.unit_F = 1000. #N
self.unit_t = 1. #s
def update_parameter(self):
self.meta_names_of_parameter = {'sigma': ['Max. Spannung', 'Max Stress'],
'f': ['Frequenz', 'Frequency'],
'T': ['Versuchstemperatur', 'Target Test Temperature'],
'Nfrom': ['Erster Aufzeichnungslastwechsel', 'Start Cycle'],
'Nto': ['Letzer Aufzeichnungslastwechsel', 'Last Cycle'],
't': ['Zeitfolgen', 'Time Series'],
'speciment_diameter': ['Durchmesser (mm)', 'Diameter (mm)'],
'speciment_height': ['Länge (mm)', 'Length (mm)'],
} #list of names
self.data_column_names = {
'time': ['Time Series'],
'F': ['Load Series'],
's_hor_1': ['LVDT1 Series'],
's_hor_2': ['LVDT2 Series'],
}
def _process_data(self):
res = []
xl = pd.ExcelFile(self.data)
num_sheets = len(xl.sheet_names)
print(num_sheets)
diameter = []
height = []
for sheetid in range(num_sheets):
temp = pd.read_excel(self.data, sheetid, skiprows=97)
temp = temp.drop(index=0)
#convert data to numerical data
#convert data to numerical data
for col in temp.columns:
temp[col] = pd.to_numeric(temp[col])
@@ -124,53 +146,118 @@ class CITT_PTMDortmund(DataSineLoad):
meta = pd.read_excel(self.data, sheetid,
skiprows=1,
nrows=90)
nrows=80)
meta = meta[meta.columns[[0, 2]]]
meta = meta.set_index(
meta.columns[0]).to_dict()[meta.columns[1]]
meta.columns[0])
temp['sigma'] = float(meta['Max. Spannung'])
temp['T'] = float(meta['Versuchstemperatur'])
freq = float(meta['Frequenz'])
dt = 1 / freq
temp['f'] = freq
meta = meta.dropna(axis=0)
meta = meta[meta.columns[0]]
meta = meta.to_dict()
#remove whitespace in dict keys:
meta = {x.strip(): v for x, v in meta.items() if isinstance(x, str)}
Nfrom = int(meta['Erster Aufzeichnungslastwechsel'])
Nto = int(meta['Letzer Aufzeichnungslastwechsel'])
frequency_test = None
# add metadata to dataframe
for par in ['sigma', 'f', 'T']:
names = self.meta_names_of_parameter[par]
v = None
for name in names:
try:
v = np.round(float(meta[name]),5)
if par == 'f':
v = np.round(v,2)
break
except:
pass
assert v is not None
temp[par] = v
if par == 'f':
frequency_test = v
# read additional parameters
names = self.meta_names_of_parameter['Nfrom']
for name in names:
try:
Nfrom = int(meta[name])
break
except:
Nfrom = None
assert Nfrom is not None
names = self.meta_names_of_parameter['Nto']
for name in names:
try:
Nto = int(meta[name])
break
except:
Nto = None
assert Nto is not None
#add cycle number to dataframe
time_idx = temp['Zeitfolgen'].values
N = np.zeros_like(time_idx)
self._logger.debug(len(N))
names = self.meta_names_of_parameter['t']
for name in names:
try:
time_idx = temp[name].values
break
except:
time_idx = None
assert time_idx is not None
temp['N'] = 0
self._logger.info(f'cycles from {Nfrom} to {Nto}')
#BUG: Ist in Messdatei falsch definiert und wird von PTM angepasst. '''
#for cycle in range(Nfrom, Nto+1):
for cycle in range(10):
dt = 1.0/frequency_test
tmax = dt
max_timeindex = max(time_idx)
cycle = 0
while tmax < max_timeindex:
# time window
tmin = (cycle) * dt
tmin = (cycle) * dt
tmax = (cycle + 1) * dt
#filter data
idx = temp[(time_idx >= tmin)
& (time_idx < tmax)].index
#FIX: siehe bug oben
if any(idx)>=500:
idx = idx[idx<500]
#set cycle number
N[idx] = cycle
temp.loc[idx, 'N'] = cycle
cycle += 1
temp['N'] = N
# add diameter and height to list
diameter.append(float(meta['Durchmesser (mm)']))
height.append(float(meta['Länge (mm)']))
names = self.meta_names_of_parameter['speciment_diameter']
for name in names:
try:
v = float(meta[name])
break
except:
v = None
assert v is not None
diameter.append(v)
names = self.meta_names_of_parameter['speciment_height']
for name in names:
try:
v = float(meta[name])
break
except:
v = None
assert v is not None
height.append(v)
#append data to final dataframe
res.append(temp)
@@ -178,15 +265,18 @@ class CITT_PTMDortmund(DataSineLoad):
res = pd.concat(res)
# add data from speciment to metadata
#if not 'speciment_diameter' in self.metadata:
# self.metadata['speciment_diameter'] = np.mean(diameter)
#if not 'speciment_height' in self.metadata:
# self.metadata['speciment_height'] = np.mean(height)
if not 'diameter' in self.metadata:
self.metadata['diameter'] = np.mean(diameter)
if not 'height' in self.metadata:
self.metadata['height'] = np.mean(height)
#define in class
self.df = res.reset_index()
self.data = res.reset_index()
self.metadata.update(meta)
# log infos
logger.debug(self.metadata)
logger.debug(self.df.head())
self._logger.debug(self.metadata)
self._logger.debug(self.data.head())

0
tests/__init__.py Normal file
View File

View File

View File

@@ -0,0 +1,50 @@
import logging
import os
import toml
from src.paveit.helper import read_file_to_bytesio
from src.paveit.labtest.citt import CITT_PTMDortmund
logger = logging.getLogger(__name__)
def test_base_class():
pass
def test_citt_ptmdortmund():
data_path = 'tests/data/citt/PTM_Dortmund'
res_dict = toml.load(os.path.join(data_path, 'meta.toml'))
logger.info(res_dict)
for filename, meta in res_dict.items():
logger.info(f'run test on: {filename}, {meta}')
file = os.path.join(data_path, filename)
buf = read_file_to_bytesio(file)
metadata = {'org': 'pytest_ptm_dortmund'}
res = CITT_PTMDortmund(filename, metadata, archive=False,
data=buf)
res.run()
fit = res.fit.reset_index()
assert len(fit) == 5
m = res_dict[filename]
for col in ['F', 's_hor_sum', 's_hor_1', 's_hor_2']:
assert all(fit[f'fit_{col}_r2'] >= m['min_r2'])
sel = fit[(fit['f']==10.0) & (fit['sigma']==0.2) & (fit['T']==20.0)].iloc[0]
Emin = (1-m['max_diff'])*m['stiffness_10Hz']
Emax = (1+m['max_diff'])*m['stiffness_10Hz']
assert Emin <= sel['E'] <= Emax

116
tests/analysis/sine_test.py Normal file
View File

@@ -0,0 +1,116 @@
from random import uniform
import numpy as np
from paveit.analysis.regression import fit_cos, fit_cos_eval
def fit(freq: float = 10,
ampl: float = 100.0,
offset: float = 20.0,
slope: float = 0.1,
phase: float = 0.05,
error: float = 0.001) -> None:
N: int = 5
num_samples_per_cycle: int = 50
t = np.linspace(0, N / freq, N * num_samples_per_cycle)
y = ampl * np.cos(2 * np.pi * freq * t + phase) + slope * t + offset
r = fit_cos(t, y)
error_min = (1 - error)
error_max = (1 + error)
# ampltude
rel_error = (r['amp'] / ampl)
assert error_min <= rel_error <= error_max
# offset
rel_error = (r['offset'] / offset)
assert error_min <= rel_error <= error_max
# slope
rel_error = (r['slope'] / slope)
assert error_min <= rel_error <= error_max
# phase
rel_error = (r['phase'] / phase)
assert error_min <= rel_error <= error_max
# freq
rel_error = (r['freq'] / freq)
assert error_min <= rel_error <= error_max
def test_fit_simple_sine(ntest: int = 50) -> None:
"""
fit a simple sine signal and evaluate amplitude
error: percentage error of ampl, Error max 0.1 %
"""
fit()
#run multiple tests with random parameters
for i in range(ntest):
fit(
ampl=uniform(1e-3, 1000),
offset=uniform(1e-3, 1),
slope=uniform(1e-5, 1),
phase=uniform(1e-5, 1),
)
def fit_noise(freq: float = 10,
ampl: float = 100.0,
offset: float = 20.0,
slope: float = 0.1,
phase: float = 0.05,
noise_level: float = 0.01,
error: float = 0.01) -> None:
N: int = 5
num_samples_per_cycle: int = 50
t = np.linspace(0, N / freq, N * num_samples_per_cycle)
y = ampl * np.cos(2 * np.pi * freq * t + phase) + slope * t + offset
y_noise = np.random.normal(0, noise_level * ampl, len(t))
y = y + y_noise
r = fit_cos(t, y)
error_min = (1 - error)
error_max = (1 + error)
# ampltude
rel_error = (r['amp'] / ampl)
assert error_min <= rel_error <= error_max
# freq
rel_error = (r['freq'] / freq)
assert error_min <= rel_error <= error_max
def test_fit_simple_sine_with_noise(ntest: int = 50) -> None:
"""
fit a simple sine signal and evaluate amplitude
error: percentage error of ampl, Error max 0.1 %
"""
fit_noise()
#run multiple tests with random parameters
for i in range(ntest):
fit_noise(
ampl=uniform(1e-3, 1000),
offset=uniform(1e-3, 1),
slope=uniform(1e-5, 1),
phase=uniform(1e-5, 1),
noise_level=uniform(0.01, 0.1),
error=0.02,
)

View File

@@ -0,0 +1,4 @@
["sample_01.xlsm"]
min_r2 = 0.993
max_diff = 0.005 #%
stiffness_10Hz = 2269.0 #MPa

Binary file not shown.

0
tests/helper/__init__.py Normal file
View File

View File

@@ -0,0 +1,24 @@
import glob
import logging
import os
from src.paveit.helper import read_file_to_bytesio
logger = logging.getLogger(__name__)
data_path = 'tests/data/citt/PTM_Dortmund'
def test_read_file_compare_filesize():
files = glob.glob(os.path.join(data_path, '*.xlsm'))
for file in files:
file_stat = os.stat(file)
file_size = file_stat.st_size
buf = read_file_to_bytesio(file)
buf_size = buf.getbuffer().nbytes
assert file_size == buf_size