Base Model für CITT erstellt, PTM Dortmund ergänzt, Tests hinzugefügt
This commit is contained in:
116
tests/analysis/sine_test.py
Normal file
116
tests/analysis/sine_test.py
Normal file
@@ -0,0 +1,116 @@
|
||||
from random import uniform
|
||||
|
||||
import numpy as np
|
||||
from paveit.analysis.regression import fit_cos, fit_cos_eval
|
||||
|
||||
|
||||
def fit(freq: float = 10,
|
||||
ampl: float = 100.0,
|
||||
offset: float = 20.0,
|
||||
slope: float = 0.1,
|
||||
phase: float = 0.05,
|
||||
error: float = 0.001) -> None:
|
||||
|
||||
N: int = 5
|
||||
num_samples_per_cycle: int = 50
|
||||
|
||||
t = np.linspace(0, N / freq, N * num_samples_per_cycle)
|
||||
y = ampl * np.cos(2 * np.pi * freq * t + phase) + slope * t + offset
|
||||
|
||||
r = fit_cos(t, y)
|
||||
|
||||
error_min = (1 - error)
|
||||
error_max = (1 + error)
|
||||
|
||||
# ampltude
|
||||
rel_error = (r['amp'] / ampl)
|
||||
assert error_min <= rel_error <= error_max
|
||||
|
||||
# offset
|
||||
rel_error = (r['offset'] / offset)
|
||||
assert error_min <= rel_error <= error_max
|
||||
|
||||
# slope
|
||||
rel_error = (r['slope'] / slope)
|
||||
assert error_min <= rel_error <= error_max
|
||||
|
||||
# phase
|
||||
rel_error = (r['phase'] / phase)
|
||||
assert error_min <= rel_error <= error_max
|
||||
|
||||
# freq
|
||||
rel_error = (r['freq'] / freq)
|
||||
assert error_min <= rel_error <= error_max
|
||||
|
||||
|
||||
def test_fit_simple_sine(ntest: int = 50) -> None:
|
||||
"""
|
||||
fit a simple sine signal and evaluate amplitude
|
||||
|
||||
error: percentage error of ampl, Error max 0.1 %
|
||||
"""
|
||||
|
||||
fit()
|
||||
|
||||
#run multiple tests with random parameters
|
||||
for i in range(ntest):
|
||||
|
||||
fit(
|
||||
ampl=uniform(1e-3, 1000),
|
||||
offset=uniform(1e-3, 1),
|
||||
slope=uniform(1e-5, 1),
|
||||
phase=uniform(1e-5, 1),
|
||||
)
|
||||
|
||||
|
||||
def fit_noise(freq: float = 10,
|
||||
ampl: float = 100.0,
|
||||
offset: float = 20.0,
|
||||
slope: float = 0.1,
|
||||
phase: float = 0.05,
|
||||
noise_level: float = 0.01,
|
||||
error: float = 0.01) -> None:
|
||||
|
||||
N: int = 5
|
||||
num_samples_per_cycle: int = 50
|
||||
|
||||
t = np.linspace(0, N / freq, N * num_samples_per_cycle)
|
||||
y = ampl * np.cos(2 * np.pi * freq * t + phase) + slope * t + offset
|
||||
y_noise = np.random.normal(0, noise_level * ampl, len(t))
|
||||
|
||||
y = y + y_noise
|
||||
|
||||
r = fit_cos(t, y)
|
||||
|
||||
error_min = (1 - error)
|
||||
error_max = (1 + error)
|
||||
|
||||
# ampltude
|
||||
rel_error = (r['amp'] / ampl)
|
||||
assert error_min <= rel_error <= error_max
|
||||
|
||||
# freq
|
||||
rel_error = (r['freq'] / freq)
|
||||
assert error_min <= rel_error <= error_max
|
||||
|
||||
|
||||
def test_fit_simple_sine_with_noise(ntest: int = 50) -> None:
|
||||
"""
|
||||
fit a simple sine signal and evaluate amplitude
|
||||
|
||||
error: percentage error of ampl, Error max 0.1 %
|
||||
"""
|
||||
|
||||
fit_noise()
|
||||
|
||||
#run multiple tests with random parameters
|
||||
for i in range(ntest):
|
||||
|
||||
fit_noise(
|
||||
ampl=uniform(1e-3, 1000),
|
||||
offset=uniform(1e-3, 1),
|
||||
slope=uniform(1e-5, 1),
|
||||
phase=uniform(1e-5, 1),
|
||||
noise_level=uniform(0.01, 0.1),
|
||||
error=0.02,
|
||||
)
|
||||
Reference in New Issue
Block a user