CITT Dortmund läuft, Tests hinzugefügt
This commit is contained in:
3
Makefile
3
Makefile
@@ -1,2 +1,5 @@
|
||||
link:
|
||||
pip install -e ./
|
||||
|
||||
test:
|
||||
pytest -v -log_cli=True --log-cli-level=INFO tests
|
||||
@@ -18,19 +18,22 @@ class DataSineLoad():
|
||||
def __init__(self,
|
||||
filename: str,
|
||||
metadata: dict,
|
||||
archive: bool = True,
|
||||
logger=None,
|
||||
debug: bool = False,
|
||||
data: None | io.BytesIO = None):
|
||||
|
||||
self.filename = filename
|
||||
self.metadata = metadata
|
||||
|
||||
if isinstance(data, io.BytesIO):
|
||||
self.data = data
|
||||
|
||||
self.archive_data = archive
|
||||
self.debug = debug
|
||||
|
||||
self._logger = logging.getLogger(__name__)
|
||||
if logger == None:
|
||||
self._logger = logging.getLogger(__name__)
|
||||
else:
|
||||
self._logger = logger
|
||||
|
||||
self._logger.info(
|
||||
f'filename s3: {self.filename}, metadata: {self.metadata}')
|
||||
@@ -38,15 +41,22 @@ class DataSineLoad():
|
||||
self._pre_run()
|
||||
|
||||
def _set_parameter(self):
|
||||
self._logger.debug('run _set_parameter')
|
||||
|
||||
self.split_data_based_on_parameter = ['T', 'sigma', 'f']
|
||||
|
||||
self.col_as_int = ['N']
|
||||
self.col_as_float = ['T', 'F', 's_piston', 's_hor_1', 'f', 's_hor_1', 's_hor_2']
|
||||
self.col_as_float = [
|
||||
'T', 'F', 's_piston', 's_hor_1', 'f', 's_hor_1', 's_hor_2'
|
||||
]
|
||||
|
||||
self.val_col_names = ['time', 'T', 'f', 'sigma', 'N', 'F', 's_hor_1', 's_hor_2']
|
||||
self.val_col_names = [
|
||||
'time', 'T', 'f', 'sigma', 'N', 'F', 's_hor_1', 's_hor_2'
|
||||
]
|
||||
|
||||
self.columns_analyse = ['F','s_hor_sum','s_hor_1','s_hor_2','s_piston']
|
||||
self.columns_analyse = [
|
||||
'F', 's_hor_sum', 's_hor_1', 's_hor_2', 's_piston'
|
||||
]
|
||||
|
||||
# Header names after standardization; check if exists
|
||||
self.val_header_names = ['speciment_height', 'speciment_diameter']
|
||||
@@ -75,12 +85,12 @@ class DataSineLoad():
|
||||
self.unit_t = 1 / 1000. #s
|
||||
|
||||
def _connect_to_s3(self):
|
||||
self._logger.info('connect to db')
|
||||
self._logger.debug('run _connect to db')
|
||||
|
||||
self.__minioClient = get_minio_client_processing()
|
||||
|
||||
def _read_from_s3_to_bytesio(self):
|
||||
self._logger.info('read bytes')
|
||||
self._logger.debug('run _read bytes')
|
||||
|
||||
try:
|
||||
self._connect_to_s3()
|
||||
@@ -92,15 +102,16 @@ class DataSineLoad():
|
||||
response.release_conn()
|
||||
|
||||
self.data = io.BytesIO(self.data)
|
||||
self._logger.debug('data read from s3')
|
||||
|
||||
def _calc_hash_of_bytesio(self):
|
||||
self._logger.debug('run _calc_hash_of_bytesio')
|
||||
|
||||
self.filehash = calc_hash_of_bytes(self.data)
|
||||
self.data.seek(0)
|
||||
self._logger.debug(f'Hash of file: {self.filehash}')
|
||||
|
||||
def _process_data(self):
|
||||
|
||||
""" convert self.data (BytesIO) to pandas.DataFrame, update
|
||||
self.metadata with informations from file """
|
||||
|
||||
@@ -110,6 +121,7 @@ class DataSineLoad():
|
||||
self.data = pd.read_csv(self.data, encoding=encoding)
|
||||
|
||||
def _standardize_data(self):
|
||||
self._logger.debug('run _standardize_data')
|
||||
|
||||
colnames = list(self.data.columns)
|
||||
|
||||
@@ -119,10 +131,8 @@ class DataSineLoad():
|
||||
|
||||
self.data.columns = colnames
|
||||
|
||||
print(self.data.head(5))
|
||||
|
||||
|
||||
def _standardize_meta(self):
|
||||
self._logger.debug('run _standardize_meta')
|
||||
|
||||
for par, names in self.meta_names_of_parameter.items():
|
||||
for name in names:
|
||||
@@ -134,13 +144,15 @@ class DataSineLoad():
|
||||
break
|
||||
|
||||
def _validate_data(self):
|
||||
self._logger.debug('run _validate_data')
|
||||
|
||||
for name in self.val_col_names:
|
||||
if not name in self.data.columns:
|
||||
raise
|
||||
|
||||
|
||||
def _validate_meta(self):
|
||||
self._logger.debug('run _validate_meta')
|
||||
|
||||
for name in self.val_header_names:
|
||||
if not name in self.metadata:
|
||||
raise
|
||||
@@ -165,10 +177,8 @@ class DataSineLoad():
|
||||
|
||||
self.data = self.data[self.val_col_names]
|
||||
|
||||
|
||||
def _post_calc_missiong_values(self):
|
||||
|
||||
|
||||
cols = self.data.columns
|
||||
|
||||
if not 's_hor_sum' in cols:
|
||||
@@ -191,6 +201,7 @@ class DataSineLoad():
|
||||
return True
|
||||
|
||||
def _fit_split_data(self):
|
||||
self._logger.debug('run _fit_split_data')
|
||||
|
||||
data_gp = self.data.groupby(self.split_data_based_on_parameter)
|
||||
|
||||
@@ -229,6 +240,9 @@ class DataSineLoad():
|
||||
self.data = data_list
|
||||
#break
|
||||
|
||||
nchunks = len(self.data)
|
||||
self._logger.debug(f'data splited in {nchunks} chunks')
|
||||
|
||||
def _fit_select_data(self):
|
||||
"""
|
||||
select N load cycles from original data
|
||||
@@ -237,6 +251,8 @@ class DataSineLoad():
|
||||
|
||||
"""
|
||||
|
||||
self._logger.debug('run _fit_select_data')
|
||||
|
||||
def sel_df(df, num=5):
|
||||
|
||||
N = df['N'].unique()
|
||||
@@ -265,7 +281,6 @@ class DataSineLoad():
|
||||
Nfrom = None
|
||||
Nto = None
|
||||
|
||||
|
||||
# Fall 1: nicht alle LW in Datei
|
||||
if (max(N) < Nto) & (len(N) >= num):
|
||||
df_sel = df[(df['N'] >= N[-num]) & (df['N'] <= N[-1])]
|
||||
@@ -292,7 +307,8 @@ class DataSineLoad():
|
||||
df_sel = []
|
||||
for d in self.data:
|
||||
if self.number_of_load_cycles_for_analysis > 1:
|
||||
d_sel = sel_df(d,num=self.number_of_load_cycles_for_analysis)
|
||||
d_sel = sel_df(d,
|
||||
num=self.number_of_load_cycles_for_analysis)
|
||||
else:
|
||||
d_sel = d
|
||||
|
||||
@@ -303,22 +319,19 @@ class DataSineLoad():
|
||||
|
||||
def _calc(self):
|
||||
|
||||
print(len(self.data))
|
||||
|
||||
self.fit = []
|
||||
for idx_data, data in enumerate(self.data):
|
||||
|
||||
if data is None: continue
|
||||
if len(data) < 10: continue
|
||||
|
||||
|
||||
data.index = data.index - data.index[0]
|
||||
|
||||
res_temp = {}
|
||||
|
||||
x = data.index.values
|
||||
|
||||
freq = np.round(float(data['f'].unique()),2)
|
||||
freq = np.round(float(data['f'].unique()), 2)
|
||||
sigma = float(data['sigma'].unique())
|
||||
temperature = float(data['T'].unique())
|
||||
|
||||
@@ -327,7 +340,7 @@ class DataSineLoad():
|
||||
if not col in data.columns: continue
|
||||
y = data[col].values
|
||||
|
||||
res = fit_cos(x,y, freq=freq)
|
||||
res = fit_cos(x, y, freq=freq)
|
||||
|
||||
for key, value in res.items():
|
||||
res_temp[f'fit_{col}_{key}'] = value
|
||||
@@ -356,16 +369,9 @@ class DataSineLoad():
|
||||
|
||||
self.fit = self.fit.set_index(['T', 'f', 'sigma'])
|
||||
|
||||
print(self.fit)
|
||||
|
||||
|
||||
def _archive_binary_data(self):
|
||||
|
||||
self._logger.debug('send file to archive')
|
||||
app.send_task(
|
||||
'ArchiveFile',
|
||||
args=[self.filename, self.metadata, self.filehash, 'org', 'citt'],
|
||||
queue='archive')
|
||||
nsamples = len(self.fit)
|
||||
self._logger.info(f'fitting finished, add {nsamples} samples')
|
||||
self._logger.debug(self.fit['E'])
|
||||
|
||||
def _pre_run(self):
|
||||
|
||||
@@ -396,9 +402,4 @@ class DataSineLoad():
|
||||
self._fit_select_data()
|
||||
|
||||
self._calc()
|
||||
#self._logger.debug(f'results: {res}')
|
||||
|
||||
#if self.archive_data:
|
||||
# self._archive_binary_data()
|
||||
|
||||
#return res
|
||||
#self._logger.info(f'results: {self.fit['E']}')
|
||||
@@ -5,19 +5,21 @@ from csv import reader
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from paveit.labtest import DataSineLoad
|
||||
from torch import isin
|
||||
|
||||
|
||||
class CITTBase(DataSineLoad):
|
||||
|
||||
def _calc(self):
|
||||
return (self.df.mean().mean(), self.df.max().max())
|
||||
|
||||
|
||||
class CITT_KIT(DataSineLoad):
|
||||
|
||||
def _calc(self):
|
||||
return (self.df.mean().mean(), self.df.max().max())
|
||||
|
||||
def _process_data(self):
|
||||
logger.debug('convert bytes to pandas.DataFrame')
|
||||
self._logger.debug('convert bytes to pandas.DataFrame')
|
||||
|
||||
self.data.seek(0)
|
||||
with io.TextIOWrapper(self.data, encoding='latin-1') as read_obj:
|
||||
@@ -82,7 +84,6 @@ class CITT_KIT(DataSineLoad):
|
||||
idx = t[(t['ZEIT'] >= tmin) & (t['ZEIT'] < tmax)].index
|
||||
N[idx] = i
|
||||
|
||||
|
||||
t['N'] = N
|
||||
|
||||
res.append(t)
|
||||
@@ -96,6 +97,7 @@ class CITT_KIT(DataSineLoad):
|
||||
#define in class
|
||||
self.data = res.reset_index()
|
||||
|
||||
|
||||
class CITT_PTMDortmund(DataSineLoad):
|
||||
|
||||
def _define_units(self):
|
||||
@@ -106,15 +108,16 @@ class CITT_PTMDortmund(DataSineLoad):
|
||||
|
||||
def update_parameter(self):
|
||||
|
||||
self.meta_names_of_parameter = {'sigma': ['Max. Spannung', 'Max Stress'],
|
||||
'f': ['Frequenz', 'Frequency'],
|
||||
'T': ['Versuchstemperatur', 'Target Test Temperature'],
|
||||
'Nfrom': ['Erster Aufzeichnungslastwechsel', 'Start Cycle'],
|
||||
'Nto': ['Letzer Aufzeichnungslastwechsel', 'Last Cycle'],
|
||||
't': ['Zeitfolgen', 'Time Series'],
|
||||
'speciment_diameter': ['Durchmesser (mm)', 'Diameter (mm)'],
|
||||
'speciment_height': ['Länge (mm)', 'Length (mm)'],
|
||||
} #list of names
|
||||
self.meta_names_of_parameter = {
|
||||
'sigma': ['Max. Spannung', 'Max Stress'],
|
||||
'f': ['Frequenz', 'Frequency'],
|
||||
'T': ['Versuchstemperatur', 'Target Test Temperature'],
|
||||
'Nfrom': ['Erster Aufzeichnungslastwechsel', 'Start Cycle'],
|
||||
'Nto': ['Letzer Aufzeichnungslastwechsel', 'Last Cycle'],
|
||||
't': ['Zeitfolgen', 'Time Series'],
|
||||
'speciment_diameter': ['Durchmesser (mm)', 'Diameter (mm)'],
|
||||
'speciment_height': ['Länge (mm)', 'Length (mm)'],
|
||||
} #list of names
|
||||
|
||||
self.data_column_names = {
|
||||
'time': ['Time Series'],
|
||||
@@ -132,7 +135,6 @@ class CITT_PTMDortmund(DataSineLoad):
|
||||
diameter = []
|
||||
height = []
|
||||
|
||||
|
||||
for sheetid in range(num_sheets):
|
||||
temp = pd.read_excel(self.data, sheetid, skiprows=97)
|
||||
temp = temp.drop(index=0)
|
||||
@@ -141,16 +143,12 @@ class CITT_PTMDortmund(DataSineLoad):
|
||||
for col in temp.columns:
|
||||
temp[col] = pd.to_numeric(temp[col])
|
||||
|
||||
|
||||
#read metadata from file
|
||||
|
||||
meta = pd.read_excel(self.data, sheetid,
|
||||
skiprows=1,
|
||||
nrows=80)
|
||||
meta = pd.read_excel(self.data, sheetid, skiprows=1, nrows=80)
|
||||
|
||||
meta = meta[meta.columns[[0, 2]]]
|
||||
meta = meta.set_index(
|
||||
meta.columns[0])
|
||||
meta = meta.set_index(meta.columns[0])
|
||||
|
||||
meta = meta.dropna(axis=0)
|
||||
meta = meta[meta.columns[0]]
|
||||
@@ -158,7 +156,10 @@ class CITT_PTMDortmund(DataSineLoad):
|
||||
meta = meta.to_dict()
|
||||
|
||||
#remove whitespace in dict keys:
|
||||
meta = {x.strip(): v for x, v in meta.items() if isinstance(x, str)}
|
||||
meta = {
|
||||
x.strip(): v
|
||||
for x, v in meta.items() if isinstance(x, str)
|
||||
}
|
||||
|
||||
frequency_test = None
|
||||
# add metadata to dataframe
|
||||
@@ -167,10 +168,10 @@ class CITT_PTMDortmund(DataSineLoad):
|
||||
v = None
|
||||
for name in names:
|
||||
try:
|
||||
v = np.round(float(meta[name]),5)
|
||||
v = np.round(float(meta[name]), 5)
|
||||
|
||||
if par == 'f':
|
||||
v = np.round(v,2)
|
||||
v = np.round(v, 2)
|
||||
|
||||
break
|
||||
except:
|
||||
@@ -213,12 +214,10 @@ class CITT_PTMDortmund(DataSineLoad):
|
||||
|
||||
temp['N'] = 0
|
||||
|
||||
self._logger.info(f'cycles from {Nfrom} to {Nto}')
|
||||
|
||||
#BUG: Ist in Messdatei falsch definiert und wird von PTM angepasst. '''
|
||||
#for cycle in range(Nfrom, Nto+1):
|
||||
|
||||
dt = 1.0/frequency_test
|
||||
dt = 1.0 / frequency_test
|
||||
|
||||
tmax = dt
|
||||
max_timeindex = max(time_idx)
|
||||
@@ -229,8 +228,7 @@ class CITT_PTMDortmund(DataSineLoad):
|
||||
tmin = (cycle) * dt
|
||||
tmax = (cycle + 1) * dt
|
||||
#filter data
|
||||
idx = temp[(time_idx >= tmin)
|
||||
& (time_idx < tmax)].index
|
||||
idx = temp[(time_idx >= tmin) & (time_idx < tmax)].index
|
||||
|
||||
#set cycle number
|
||||
temp.loc[idx, 'N'] = cycle
|
||||
@@ -271,12 +269,10 @@ class CITT_PTMDortmund(DataSineLoad):
|
||||
#if not 'speciment_height' in self.metadata:
|
||||
# self.metadata['speciment_height'] = np.mean(height)
|
||||
|
||||
|
||||
|
||||
#define in class
|
||||
self.data = res.reset_index()
|
||||
self.metadata.update(meta)
|
||||
|
||||
# log infos
|
||||
self._logger.debug(self.metadata)
|
||||
self._logger.debug(self.data.head())
|
||||
self._logger.info(self.metadata)
|
||||
self._logger.info(self.data.head())
|
||||
@@ -34,7 +34,7 @@ def test_citt_ptmdortmund():
|
||||
res.run()
|
||||
|
||||
fit = res.fit.reset_index()
|
||||
|
||||
logger.info(fit.head())
|
||||
assert len(fit) == 5
|
||||
|
||||
m = res_dict[filename]
|
||||
@@ -42,7 +42,9 @@ def test_citt_ptmdortmund():
|
||||
for col in ['F', 's_hor_sum', 's_hor_1', 's_hor_2']:
|
||||
assert all(fit[f'fit_{col}_r2'] >= m['min_r2'])
|
||||
|
||||
sel = fit[(fit['f']==10.0) & (fit['sigma']==0.2) & (fit['T']==20.0)].iloc[0]
|
||||
|
||||
|
||||
sel = fit[(fit['f']==10.0) & (fit['T']==20.0)].iloc[0]
|
||||
|
||||
Emin = (1-m['max_diff'])*m['stiffness_10Hz']
|
||||
Emax = (1+m['max_diff'])*m['stiffness_10Hz']
|
||||
|
||||
@@ -2,3 +2,13 @@
|
||||
min_r2 = 0.993
|
||||
max_diff = 0.005 #%
|
||||
stiffness_10Hz = 2269.0 #MPa
|
||||
|
||||
["sample_02.xlsm"]
|
||||
min_r2 = 0.993
|
||||
max_diff = 0.005 #%
|
||||
stiffness_10Hz = 2250.0 #MPa
|
||||
|
||||
["sample_03.xlsm"]
|
||||
min_r2 = 0.993
|
||||
max_diff = 0.005 #%
|
||||
stiffness_10Hz = 2231.0 #MPa
|
||||
BIN
tests/data/citt/PTM_Dortmund/sample_02.xlsm
Executable file
BIN
tests/data/citt/PTM_Dortmund/sample_02.xlsm
Executable file
Binary file not shown.
BIN
tests/data/citt/PTM_Dortmund/sample_03.xlsm
Executable file
BIN
tests/data/citt/PTM_Dortmund/sample_03.xlsm
Executable file
Binary file not shown.
Reference in New Issue
Block a user