CITT Dortmund läuft, Tests hinzugefügt

This commit is contained in:
Markus Clauß
2023-02-28 16:11:55 +01:00
parent e861dbf10e
commit e5c9f6904c
7 changed files with 136 additions and 124 deletions

View File

@@ -18,19 +18,22 @@ class DataSineLoad():
def __init__(self,
filename: str,
metadata: dict,
archive: bool = True,
logger=None,
debug: bool = False,
data: None | io.BytesIO = None):
self.filename = filename
self.metadata = metadata
if isinstance(data, io.BytesIO):
self.data = data
self.archive_data = archive
self.debug = debug
self._logger = logging.getLogger(__name__)
if logger == None:
self._logger = logging.getLogger(__name__)
else:
self._logger = logger
self._logger.info(
f'filename s3: {self.filename}, metadata: {self.metadata}')
@@ -38,16 +41,23 @@ class DataSineLoad():
self._pre_run()
def _set_parameter(self):
self._logger.debug('run _set_parameter')
self.split_data_based_on_parameter = ['T', 'sigma', 'f']
self.col_as_int = ['N']
self.col_as_float = ['T', 'F', 's_piston', 's_hor_1', 'f', 's_hor_1', 's_hor_2']
self.col_as_float = [
'T', 'F', 's_piston', 's_hor_1', 'f', 's_hor_1', 's_hor_2'
]
self.val_col_names = [
'time', 'T', 'f', 'sigma', 'N', 'F', 's_hor_1', 's_hor_2'
]
self.columns_analyse = [
'F', 's_hor_sum', 's_hor_1', 's_hor_2', 's_piston'
]
self.val_col_names = ['time', 'T', 'f', 'sigma', 'N', 'F', 's_hor_1', 's_hor_2']
self.columns_analyse = ['F','s_hor_sum','s_hor_1','s_hor_2','s_piston']
# Header names after standardization; check if exists
self.val_header_names = ['speciment_height', 'speciment_diameter']
@@ -56,7 +66,7 @@ class DataSineLoad():
self.meta_names_of_parameter = {
'sigma': ['Max. Spannung']
} #list of names
self.data_column_names = {
'time': ['Time Series'],
'F': ['Load Series'],
@@ -75,12 +85,12 @@ class DataSineLoad():
self.unit_t = 1 / 1000. #s
def _connect_to_s3(self):
self._logger.info('connect to db')
self._logger.debug('run _connect to db')
self.__minioClient = get_minio_client_processing()
def _read_from_s3_to_bytesio(self):
self._logger.info('read bytes')
self._logger.debug('run _read bytes')
try:
self._connect_to_s3()
@@ -92,55 +102,57 @@ class DataSineLoad():
response.release_conn()
self.data = io.BytesIO(self.data)
self._logger.debug('data read from s3')
def _calc_hash_of_bytesio(self):
self._logger.debug('run _calc_hash_of_bytesio')
self.filehash = calc_hash_of_bytes(self.data)
self.data.seek(0)
self._logger.debug(f'Hash of file: {self.filehash}')
def _process_data(self):
""" convert self.data (BytesIO) to pandas.DataFrame, update
self.metadata with informations from file """
self._logger.debug('convert bytes to pandas.DataFrame')
encoding = 'utf-8'
self.data = pd.read_csv(self.data, encoding=encoding)
def _standardize_data(self):
self._logger.debug('run _standardize_data')
colnames = list(self.data.columns)
for par, names in self.data_column_names.items():
for name in names:
colnames = [sub.replace(name, par) for sub in colnames]
self.data.columns = colnames
print(self.data.head(5))
def _standardize_meta(self):
self._logger.debug('run _standardize_meta')
for par, names in self.meta_names_of_parameter.items():
for name in names:
if name in self.metadata:
self.metadata[par] = self.metadata[name]
self.metadata.pop(name)
break
def _validate_data(self):
self._logger.debug('run _validate_data')
for name in self.val_col_names:
if not name in self.data.columns:
raise
def _validate_meta(self):
self._logger.debug('run _validate_meta')
for name in self.val_header_names:
if not name in self.metadata:
raise
@@ -160,14 +172,12 @@ class DataSineLoad():
return True
def _post_select_importent_columns(self):
# TODO: add more columns, check datamodel
self.data = self.data[self.val_col_names]
def _post_calc_missiong_values(self):
cols = self.data.columns
@@ -191,7 +201,8 @@ class DataSineLoad():
return True
def _fit_split_data(self):
self._logger.debug('run _fit_split_data')
data_gp = self.data.groupby(self.split_data_based_on_parameter)
data_list = []
@@ -229,6 +240,9 @@ class DataSineLoad():
self.data = data_list
#break
nchunks = len(self.data)
self._logger.debug(f'data splited in {nchunks} chunks')
def _fit_select_data(self):
"""
select N load cycles from original data
@@ -236,9 +250,11 @@ class DataSineLoad():
(b) last N cycles
"""
self._logger.debug('run _fit_select_data')
def sel_df(df, num=5):
N = df['N'].unique()
freq = float(df['f'].unique()[0])
@@ -264,21 +280,20 @@ class DataSineLoad():
else:
Nfrom = None
Nto = None
# Fall 1: nicht alle LW in Datei
if (max(N) < Nto) & (len(N) >= num):
df_sel = df[(df['N'] >= N[-num]) & (df['N'] <= N[-1])]
# Fall 2:
else:
if Nfrom != None:
if len(N) > Nto - Nfrom:
df_sel = df[(df['N'] >= Nfrom) & (df['N'] <= Nto)]
return df_sel
if not isinstance(self.data, list):
if self.number_of_load_cycles_for_analysis > 1:
df_sel = [
@@ -292,7 +307,8 @@ class DataSineLoad():
df_sel = []
for d in self.data:
if self.number_of_load_cycles_for_analysis > 1:
d_sel = sel_df(d,num=self.number_of_load_cycles_for_analysis)
d_sel = sel_df(d,
num=self.number_of_load_cycles_for_analysis)
else:
d_sel = d
@@ -300,38 +316,35 @@ class DataSineLoad():
# replace data
self.data = df_sel
def _calc(self):
print(len(self.data))
self.fit = []
for idx_data, data in enumerate(self.data):
if data is None: continue
if len(data) < 10: continue
data.index = data.index - data.index[0]
res_temp = {}
x = data.index.values
freq = np.round(float(data['f'].unique()),2)
freq = np.round(float(data['f'].unique()), 2)
sigma = float(data['sigma'].unique())
temperature = float(data['T'].unique())
for idxcol, col in enumerate(self.columns_analyse):
if not col in data.columns: continue
y = data[col].values
res = fit_cos(x,y, freq=freq)
res = fit_cos(x, y, freq=freq)
for key, value in res.items():
res_temp[f'fit_{col}_{key}'] = value
res_temp[f'fit_{col}_max'] = max(y)
res_temp[f'fit_{col}_min'] = min(y)
@@ -343,9 +356,9 @@ class DataSineLoad():
deltaF = res_temp['fit_F_amp']
nu = calc_nu(temperature)
res_temp['nu'] = nu
h = float(self.metadata['speciment_height'])
deltaU = res_temp['fit_s_hor_sum_amp']
res_temp['E'] = (deltaF * (0.274 + nu)) / (h * deltaU)
@@ -353,19 +366,12 @@ class DataSineLoad():
self.fit.append(res_temp)
self.fit = pd.DataFrame.from_records(self.fit)
self.fit = self.fit.set_index(['T', 'f', 'sigma'])
print(self.fit)
def _archive_binary_data(self):
self._logger.debug('send file to archive')
app.send_task(
'ArchiveFile',
args=[self.filename, self.metadata, self.filehash, 'org', 'citt'],
queue='archive')
self.fit = self.fit.set_index(['T', 'f', 'sigma'])
nsamples = len(self.fit)
self._logger.info(f'fitting finished, add {nsamples} samples')
self._logger.debug(self.fit['E'])
def _pre_run(self):
@@ -396,9 +402,4 @@ class DataSineLoad():
self._fit_select_data()
self._calc()
#self._logger.debug(f'results: {res}')
#if self.archive_data:
# self._archive_binary_data()
#return res
#self._logger.info(f'results: {self.fit['E']}')

View File

@@ -5,19 +5,21 @@ from csv import reader
import numpy as np
import pandas as pd
from paveit.labtest import DataSineLoad
from torch import isin
class CITTBase(DataSineLoad):
def _calc(self):
return (self.df.mean().mean(), self.df.max().max())
class CITT_KIT(DataSineLoad):
def _calc(self):
return (self.df.mean().mean(), self.df.max().max())
def _process_data(self):
logger.debug('convert bytes to pandas.DataFrame')
self._logger.debug('convert bytes to pandas.DataFrame')
self.data.seek(0)
with io.TextIOWrapper(self.data, encoding='latin-1') as read_obj:
@@ -82,7 +84,6 @@ class CITT_KIT(DataSineLoad):
idx = t[(t['ZEIT'] >= tmin) & (t['ZEIT'] < tmax)].index
N[idx] = i
t['N'] = N
res.append(t)
@@ -96,8 +97,9 @@ class CITT_KIT(DataSineLoad):
#define in class
self.data = res.reset_index()
class CITT_PTMDortmund(DataSineLoad):
def _define_units(self):
self.unit_s = 1 #mm
@@ -106,15 +108,16 @@ class CITT_PTMDortmund(DataSineLoad):
def update_parameter(self):
self.meta_names_of_parameter = {'sigma': ['Max. Spannung', 'Max Stress'],
'f': ['Frequenz', 'Frequency'],
'T': ['Versuchstemperatur', 'Target Test Temperature'],
'Nfrom': ['Erster Aufzeichnungslastwechsel', 'Start Cycle'],
'Nto': ['Letzer Aufzeichnungslastwechsel', 'Last Cycle'],
't': ['Zeitfolgen', 'Time Series'],
'speciment_diameter': ['Durchmesser (mm)', 'Diameter (mm)'],
'speciment_height': ['Länge (mm)', 'Length (mm)'],
} #list of names
self.meta_names_of_parameter = {
'sigma': ['Max. Spannung', 'Max Stress'],
'f': ['Frequenz', 'Frequency'],
'T': ['Versuchstemperatur', 'Target Test Temperature'],
'Nfrom': ['Erster Aufzeichnungslastwechsel', 'Start Cycle'],
'Nto': ['Letzer Aufzeichnungslastwechsel', 'Last Cycle'],
't': ['Zeitfolgen', 'Time Series'],
'speciment_diameter': ['Durchmesser (mm)', 'Diameter (mm)'],
'speciment_height': ['Länge (mm)', 'Length (mm)'],
} #list of names
self.data_column_names = {
'time': ['Time Series'],
@@ -132,7 +135,6 @@ class CITT_PTMDortmund(DataSineLoad):
diameter = []
height = []
for sheetid in range(num_sheets):
temp = pd.read_excel(self.data, sheetid, skiprows=97)
temp = temp.drop(index=0)
@@ -141,24 +143,23 @@ class CITT_PTMDortmund(DataSineLoad):
for col in temp.columns:
temp[col] = pd.to_numeric(temp[col])
#read metadata from file
meta = pd.read_excel(self.data, sheetid,
skiprows=1,
nrows=80)
meta = pd.read_excel(self.data, sheetid, skiprows=1, nrows=80)
meta = meta[meta.columns[[0, 2]]]
meta = meta.set_index(
meta.columns[0])
meta = meta.set_index(meta.columns[0])
meta = meta.dropna(axis=0)
meta = meta[meta.columns[0]]
meta = meta.to_dict()
#remove whitespace in dict keys:
meta = {x.strip(): v for x, v in meta.items() if isinstance(x, str)}
meta = {
x.strip(): v
for x, v in meta.items() if isinstance(x, str)
}
frequency_test = None
# add metadata to dataframe
@@ -167,21 +168,21 @@ class CITT_PTMDortmund(DataSineLoad):
v = None
for name in names:
try:
v = np.round(float(meta[name]),5)
v = np.round(float(meta[name]), 5)
if par == 'f':
v = np.round(v,2)
v = np.round(v, 2)
break
except:
pass
assert v is not None
temp[par] = v
if par == 'f':
frequency_test = v
# read additional parameters
names = self.meta_names_of_parameter['Nfrom']
for name in names:
@@ -191,7 +192,7 @@ class CITT_PTMDortmund(DataSineLoad):
except:
Nfrom = None
assert Nfrom is not None
names = self.meta_names_of_parameter['Nto']
for name in names:
try:
@@ -209,32 +210,29 @@ class CITT_PTMDortmund(DataSineLoad):
break
except:
time_idx = None
assert time_idx is not None
temp['N'] = 0
assert time_idx is not None
self._logger.info(f'cycles from {Nfrom} to {Nto}')
temp['N'] = 0
#BUG: Ist in Messdatei falsch definiert und wird von PTM angepasst. '''
#for cycle in range(Nfrom, Nto+1):
dt = 1.0/frequency_test
dt = 1.0 / frequency_test
tmax = dt
max_timeindex = max(time_idx)
cycle = 0
while tmax < max_timeindex:
# time window
tmin = (cycle) * dt
tmin = (cycle) * dt
tmax = (cycle + 1) * dt
#filter data
idx = temp[(time_idx >= tmin)
& (time_idx < tmax)].index
idx = temp[(time_idx >= tmin) & (time_idx < tmax)].index
#set cycle number
temp.loc[idx, 'N'] = cycle
cycle += 1
# add diameter and height to list
@@ -247,7 +245,7 @@ class CITT_PTMDortmund(DataSineLoad):
v = None
assert v is not None
diameter.append(v)
names = self.meta_names_of_parameter['speciment_height']
for name in names:
try:
@@ -257,7 +255,7 @@ class CITT_PTMDortmund(DataSineLoad):
v = None
assert v is not None
height.append(v)
#append data to final dataframe
res.append(temp)
@@ -270,13 +268,11 @@ class CITT_PTMDortmund(DataSineLoad):
# self.metadata['speciment_diameter'] = np.mean(diameter)
#if not 'speciment_height' in self.metadata:
# self.metadata['speciment_height'] = np.mean(height)
#define in class
self.data = res.reset_index()
self.metadata.update(meta)
# log infos
self._logger.debug(self.metadata)
self._logger.debug(self.data.head())
self._logger.info(self.metadata)
self._logger.info(self.data.head())