init package and add first subpackages

This commit is contained in:
Markus Clauß
2023-02-27 17:07:04 +01:00
commit 1b4ce18eca
16 changed files with 1658 additions and 0 deletions

2
Makefile Normal file
View File

@@ -0,0 +1,2 @@
link:
pip install -e ./

1
README.md Normal file
View File

@@ -0,0 +1 @@
# PAVE-IT Python Package

375
poetry.lock generated Normal file
View File

@@ -0,0 +1,375 @@
# This file is automatically @generated by Poetry and should not be changed by hand.
[[package]]
name = "asteval"
version = "0.9.29"
description = "Safe, minimalistic evaluator of python expression using ast module"
category = "main"
optional = false
python-versions = ">=3.7"
files = [
{file = "asteval-0.9.29-py3-none-any.whl", hash = "sha256:134e42fc4790582f2f926999e59abb444fb491046ba396836962268aad8a68a5"},
{file = "asteval-0.9.29.tar.gz", hash = "sha256:ab98c61ba9394149c774ae7861497e9c32580301aa693ca19746997216c31fab"},
]
[package.extras]
all = ["Sphinx", "build", "coverage", "pytest", "pytest-cov", "twine"]
dev = ["build", "twine"]
doc = ["Sphinx"]
test = ["coverage", "pytest", "pytest-cov"]
[[package]]
name = "dnspython"
version = "2.3.0"
description = "DNS toolkit"
category = "main"
optional = false
python-versions = ">=3.7,<4.0"
files = [
{file = "dnspython-2.3.0-py3-none-any.whl", hash = "sha256:89141536394f909066cabd112e3e1a37e4e654db00a25308b0f130bc3152eb46"},
{file = "dnspython-2.3.0.tar.gz", hash = "sha256:224e32b03eb46be70e12ef6d64e0be123a64e621ab4c0822ff6d450d52a540b9"},
]
[package.extras]
curio = ["curio (>=1.2,<2.0)", "sniffio (>=1.1,<2.0)"]
dnssec = ["cryptography (>=2.6,<40.0)"]
doh = ["h2 (>=4.1.0)", "httpx (>=0.21.1)", "requests (>=2.23.0,<3.0.0)", "requests-toolbelt (>=0.9.1,<0.11.0)"]
doq = ["aioquic (>=0.9.20)"]
idna = ["idna (>=2.1,<4.0)"]
trio = ["trio (>=0.14,<0.23)"]
wmi = ["wmi (>=1.5.1,<2.0.0)"]
[[package]]
name = "future"
version = "0.18.3"
description = "Clean single-source support for Python 3 and 2"
category = "main"
optional = false
python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
files = [
{file = "future-0.18.3.tar.gz", hash = "sha256:34a17436ed1e96697a86f9de3d15a3b0be01d8bc8de9c1dffd59fb8234ed5307"},
]
[[package]]
name = "lmfit"
version = "1.1.0"
description = "Least-Squares Minimization with Bounds and Constraints"
category = "main"
optional = false
python-versions = ">=3.7"
files = [
{file = "lmfit-1.1.0-py3-none-any.whl", hash = "sha256:29f0540f94b3969a23db2b51abf309f327af8ea3667443ac4cd93d07fdfdb14f"},
{file = "lmfit-1.1.0.tar.gz", hash = "sha256:a2755b708ad7bad010178da28f082f55cbee7a084a625b452632e2d77b5391fb"},
]
[package.dependencies]
asteval = ">=0.9.28"
numpy = ">=1.19"
scipy = ">=1.6"
uncertainties = ">=3.1.4"
[package.extras]
all = ["Pillow", "Sphinx", "build", "cairosvg", "check-wheel-contents", "codecov", "corner", "coverage", "dill", "emcee (>=3.0.0)", "flaky", "jupyter-sphinx (>=0.2.4)", "matplotlib", "numdifftools", "pandas", "pre-commit", "pycairo", "pytest", "pytest-cov", "sphinx-gallery (>=0.10)", "sphinxcontrib-svg2pdfconverter", "sympy", "twine"]
dev = ["build", "check-wheel-contents", "pre-commit", "twine"]
doc = ["Pillow", "Sphinx", "cairosvg", "corner", "dill", "emcee (>=3.0.0)", "jupyter-sphinx (>=0.2.4)", "matplotlib", "numdifftools", "pandas", "pycairo", "sphinx-gallery (>=0.10)", "sphinxcontrib-svg2pdfconverter", "sympy"]
test = ["codecov", "coverage", "flaky", "pytest", "pytest-cov"]
[[package]]
name = "mongoengine"
version = "0.26.0"
description = "MongoEngine is a Python Object-Document Mapper for working with MongoDB."
category = "main"
optional = false
python-versions = ">=3.7"
files = [
{file = "mongoengine-0.26.0-py3-none-any.whl", hash = "sha256:020a0779d1830affc649f2760d8c408e998981f18898e425eb041915181d3a53"},
{file = "mongoengine-0.26.0.tar.gz", hash = "sha256:3f284bdcbe8d1a3a9b8ab7d3c3ed672d10b8fd2e545447cd1d75e40d6e978332"},
]
[package.dependencies]
pymongo = ">=3.4,<5.0"
[[package]]
name = "numpy"
version = "1.24.2"
description = "Fundamental package for array computing in Python"
category = "main"
optional = false
python-versions = ">=3.8"
files = [
{file = "numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d"},
{file = "numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5"},
{file = "numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253"},
{file = "numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978"},
{file = "numpy-1.24.2-cp310-cp310-win32.whl", hash = "sha256:2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9"},
{file = "numpy-1.24.2-cp310-cp310-win_amd64.whl", hash = "sha256:97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0"},
{file = "numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a"},
{file = "numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0"},
{file = "numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281"},
{file = "numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910"},
{file = "numpy-1.24.2-cp311-cp311-win32.whl", hash = "sha256:e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95"},
{file = "numpy-1.24.2-cp311-cp311-win_amd64.whl", hash = "sha256:557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04"},
{file = "numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2"},
{file = "numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5"},
{file = "numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a"},
{file = "numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96"},
{file = "numpy-1.24.2-cp38-cp38-win32.whl", hash = "sha256:e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d"},
{file = "numpy-1.24.2-cp38-cp38-win_amd64.whl", hash = "sha256:76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756"},
{file = "numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a"},
{file = "numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f"},
{file = "numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb"},
{file = "numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780"},
{file = "numpy-1.24.2-cp39-cp39-win32.whl", hash = "sha256:63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468"},
{file = "numpy-1.24.2-cp39-cp39-win_amd64.whl", hash = "sha256:a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5"},
{file = "numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d"},
{file = "numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa"},
{file = "numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f"},
{file = "numpy-1.24.2.tar.gz", hash = "sha256:003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22"},
]
[[package]]
name = "pandas"
version = "1.5.3"
description = "Powerful data structures for data analysis, time series, and statistics"
category = "main"
optional = false
python-versions = ">=3.8"
files = [
{file = "pandas-1.5.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3749077d86e3a2f0ed51367f30bf5b82e131cc0f14260c4d3e499186fccc4406"},
{file = "pandas-1.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:972d8a45395f2a2d26733eb8d0f629b2f90bebe8e8eddbb8829b180c09639572"},
{file = "pandas-1.5.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:50869a35cbb0f2e0cd5ec04b191e7b12ed688874bd05dd777c19b28cbea90996"},
{file = "pandas-1.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3ac844a0fe00bfaeb2c9b51ab1424e5c8744f89860b138434a363b1f620f354"},
{file = "pandas-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a0a56cef15fd1586726dace5616db75ebcfec9179a3a55e78f72c5639fa2a23"},
{file = "pandas-1.5.3-cp310-cp310-win_amd64.whl", hash = "sha256:478ff646ca42b20376e4ed3fa2e8d7341e8a63105586efe54fa2508ee087f328"},
{file = "pandas-1.5.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6973549c01ca91ec96199e940495219c887ea815b2083722821f1d7abfa2b4dc"},
{file = "pandas-1.5.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c39a8da13cede5adcd3be1182883aea1c925476f4e84b2807a46e2775306305d"},
{file = "pandas-1.5.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f76d097d12c82a535fda9dfe5e8dd4127952b45fea9b0276cb30cca5ea313fbc"},
{file = "pandas-1.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e474390e60ed609cec869b0da796ad94f420bb057d86784191eefc62b65819ae"},
{file = "pandas-1.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f2b952406a1588ad4cad5b3f55f520e82e902388a6d5a4a91baa8d38d23c7f6"},
{file = "pandas-1.5.3-cp311-cp311-win_amd64.whl", hash = "sha256:bc4c368f42b551bf72fac35c5128963a171b40dce866fb066540eeaf46faa003"},
{file = "pandas-1.5.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:14e45300521902689a81f3f41386dc86f19b8ba8dd5ac5a3c7010ef8d2932813"},
{file = "pandas-1.5.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9842b6f4b8479e41968eced654487258ed81df7d1c9b7b870ceea24ed9459b31"},
{file = "pandas-1.5.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:26d9c71772c7afb9d5046e6e9cf42d83dd147b5cf5bcb9d97252077118543792"},
{file = "pandas-1.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fbcb19d6fceb9e946b3e23258757c7b225ba450990d9ed63ccceeb8cae609f7"},
{file = "pandas-1.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:565fa34a5434d38e9d250af3c12ff931abaf88050551d9fbcdfafca50d62babf"},
{file = "pandas-1.5.3-cp38-cp38-win32.whl", hash = "sha256:87bd9c03da1ac870a6d2c8902a0e1fd4267ca00f13bc494c9e5a9020920e1d51"},
{file = "pandas-1.5.3-cp38-cp38-win_amd64.whl", hash = "sha256:41179ce559943d83a9b4bbacb736b04c928b095b5f25dd2b7389eda08f46f373"},
{file = "pandas-1.5.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c74a62747864ed568f5a82a49a23a8d7fe171d0c69038b38cedf0976831296fa"},
{file = "pandas-1.5.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c4c00e0b0597c8e4f59e8d461f797e5d70b4d025880516a8261b2817c47759ee"},
{file = "pandas-1.5.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a50d9a4336a9621cab7b8eb3fb11adb82de58f9b91d84c2cd526576b881a0c5a"},
{file = "pandas-1.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd05f7783b3274aa206a1af06f0ceed3f9b412cf665b7247eacd83be41cf7bf0"},
{file = "pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f69c4029613de47816b1bb30ff5ac778686688751a5e9c99ad8c7031f6508e5"},
{file = "pandas-1.5.3-cp39-cp39-win32.whl", hash = "sha256:7cec0bee9f294e5de5bbfc14d0573f65526071029d036b753ee6507d2a21480a"},
{file = "pandas-1.5.3-cp39-cp39-win_amd64.whl", hash = "sha256:dfd681c5dc216037e0b0a2c821f5ed99ba9f03ebcf119c7dac0e9a7b960b9ec9"},
{file = "pandas-1.5.3.tar.gz", hash = "sha256:74a3fd7e5a7ec052f183273dc7b0acd3a863edf7520f5d3a1765c04ffdb3b0b1"},
]
[package.dependencies]
numpy = [
{version = ">=1.21.0", markers = "python_version >= \"3.10\""},
{version = ">=1.23.2", markers = "python_version >= \"3.11\""},
]
python-dateutil = ">=2.8.1"
pytz = ">=2020.1"
[package.extras]
test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"]
[[package]]
name = "pymongo"
version = "4.3.3"
description = "Python driver for MongoDB <http://www.mongodb.org>"
category = "main"
optional = false
python-versions = ">=3.7"
files = [
{file = "pymongo-4.3.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:74731c9e423c93cbe791f60c27030b6af6a948cef67deca079da6cd1bb583a8e"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux1_i686.whl", hash = "sha256:66413c50d510e5bcb0afc79880d1693a2185bcea003600ed898ada31338c004e"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:9b87b23570565a6ddaa9244d87811c2ee9cffb02a753c8a2da9c077283d85845"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux2014_i686.whl", hash = "sha256:695939036a320f4329ccf1627edefbbb67cc7892b8222d297b0dd2313742bfee"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux2014_ppc64le.whl", hash = "sha256:ffcc8394123ea8d43fff8e5d000095fe7741ce3f8988366c5c919c4f5eb179d3"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux2014_s390x.whl", hash = "sha256:943f208840777f34312c103a2d1caab02d780c4e9be26b3714acf6c4715ba7e1"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:01f7cbe88d22440b6594c955e37312d932fd632ffed1a86d0c361503ca82cc9d"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cdb87309de97c63cb9a69132e1cb16be470e58cffdfbad68fdd1dc292b22a840"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d86c35d94b5499689354ccbc48438a79f449481ee6300f3e905748edceed78e7"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a966d5304b7d90c45c404914e06bbf02c5bf7e99685c6c12f0047ef2aa837142"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be1d2ce7e269215c3ee9a215e296b7a744aff4f39233486d2c4d77f5f0c561a6"},
{file = "pymongo-4.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:55b6163dac53ef1e5d834297810c178050bd0548a4136cd4e0f56402185916ca"},
{file = "pymongo-4.3.3-cp310-cp310-win32.whl", hash = "sha256:dc0cff74cd36d7e1edba91baa09622c35a8a57025f2f2b7a41e3f83b1db73186"},
{file = "pymongo-4.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:cafa52873ae12baa512a8721afc20de67a36886baae6a5f394ddef0ce9391f91"},
{file = "pymongo-4.3.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:599d3f6fbef31933b96e2d906b0f169b3371ff79ea6aaf6ecd76c947a3508a3d"},
{file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0640b4e9d008e13956b004d1971a23377b3d45491f87082161c92efb1e6c0d6"},
{file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:341221e2f2866a5960e6f8610f4cbac0bb13097f3b1a289aa55aba984fc0d969"},
{file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e7fac06a539daef4fcf5d8288d0d21b412f9b750454cd5a3cf90484665db442a"},
{file = "pymongo-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3a51901066696c4af38c6c63a1f0aeffd5e282367ff475de8c191ec9609b56d"},
{file = "pymongo-4.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3055510fdfdb1775bc8baa359783022f70bb553f2d46e153c094dfcb08578ff"},
{file = "pymongo-4.3.3-cp311-cp311-win32.whl", hash = "sha256:524d78673518dcd352a91541ecd2839c65af92dc883321c2109ef6e5cd22ef23"},
{file = "pymongo-4.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:b8a03af1ce79b902a43f5f694c4ca8d92c2a4195db0966f08f266549e2fc49bc"},
{file = "pymongo-4.3.3-cp37-cp37m-macosx_10_6_intel.whl", hash = "sha256:39b03045c71f761aee96a12ebfbc2f4be89e724ff6f5e31c2574c1a0e2add8bd"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:6fcfbf435eebf8a1765c6d1f46821740ebe9f54f815a05c8fc30d789ef43cb12"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:7d43ac9c7eeda5100fb0a7152fab7099c9cf9e5abd3bb36928eb98c7d7a339c6"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:3b93043b14ba7eb08c57afca19751658ece1cfa2f0b7b1fb5c7a41452fbb8482"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_i686.whl", hash = "sha256:c09956606c08c4a7c6178a04ba2dd9388fcc5db32002ade9c9bc865ab156ab6d"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_ppc64le.whl", hash = "sha256:b0cfe925610f2fd59555bb7fc37bd739e4b197d33f2a8b2fae7b9c0c6640318c"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_s390x.whl", hash = "sha256:4d00b91c77ceb064c9b0459f0d6ea5bfdbc53ea9e17cf75731e151ef25a830c7"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:c6258a3663780ae47ba73d43eb63c79c40ffddfb764e09b56df33be2f9479837"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c29e758f0e734e1e90357ae01ec9c6daf19ff60a051192fe110d8fb25c62600e"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:12f3621a46cdc7a9ba8080422262398a91762a581d27e0647746588d3f995c88"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:47f7aa217b25833cd6f0e72b0d224be55393c2692b4f5e0561cb3beeb10296e9"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c2fdc855149efe7cdcc2a01ca02bfa24761c640203ea94df467f3baf19078be"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5effd87c7d363890259eac16c56a4e8da307286012c076223997f8cc4a8c435b"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6dd1cf2995fdbd64fc0802313e8323f5fa18994d51af059b5b8862b73b5e53f0"},
{file = "pymongo-4.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:bb869707d8e30645ed6766e44098600ca6cdf7989c22a3ea2b7966bb1d98d4b2"},
{file = "pymongo-4.3.3-cp37-cp37m-win32.whl", hash = "sha256:49210feb0be8051a64d71691f0acbfbedc33e149f0a5d6e271fddf6a12493fed"},
{file = "pymongo-4.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:54c377893f2cbbffe39abcff5ff2e917b082c364521fa079305f6f064e1a24a9"},
{file = "pymongo-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c184ec5be465c0319440734491e1aa4709b5f3ba75fdfc9dbbc2ae715a7f6829"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:dca34367a4e77fcab0693e603a959878eaf2351585e7d752cac544bc6b2dee46"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cd6a4afb20fb3c26a7bfd4611a0bbb24d93cbd746f5eb881f114b5e38fd55501"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:0c466710871d0026c190fc4141e810cf9d9affbf4935e1d273fbdc7d7cda6143"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux2014_i686.whl", hash = "sha256:d07d06dba5b5f7d80f9cc45501456e440f759fe79f9895922ed486237ac378a8"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux2014_ppc64le.whl", hash = "sha256:711bc52cb98e7892c03e9b669bebd89c0a890a90dbc6d5bb2c47f30239bac6e9"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux2014_s390x.whl", hash = "sha256:34b040e095e1671df0c095ec0b04fc4ebb19c4c160f87c2b55c079b16b1a6b00"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux2014_x86_64.whl", hash = "sha256:4ed00f96e147f40b565fe7530d1da0b0f3ab803d5dd5b683834500fa5d195ec4"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef888f48eb9203ee1e04b9fb27429017b290fb916f1e7826c2f7808c88798394"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:316498b642c00401370b2156b5233b256f9b33799e0a8d9d0b8a7da217a20fca"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa7e202feb683dad74f00dea066690448d0cfa310f8a277db06ec8eb466601b5"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52896e22115c97f1c829db32aa2760b0d61839cfe08b168c2b1d82f31dbc5f55"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c051fe37c96b9878f37fa58906cb53ecd13dcb7341d3a85f1e2e2f6b10782d9"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5134d33286c045393c7beb51be29754647cec5ebc051cf82799c5ce9820a2ca2"},
{file = "pymongo-4.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a9c2885b4a8e6e39db5662d8b02ca6dcec796a45e48c2de12552841f061692ba"},
{file = "pymongo-4.3.3-cp38-cp38-win32.whl", hash = "sha256:a6cd6f1db75eb07332bd3710f58f5fce4967eadbf751bad653842750a61bda62"},
{file = "pymongo-4.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:d5571b6978750601f783cea07fb6b666837010ca57e5cefa389c1d456f6222e2"},
{file = "pymongo-4.3.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:81d1a7303bd02ca1c5be4aacd4db73593f573ba8e0c543c04c6da6275fd7a47e"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux1_i686.whl", hash = "sha256:016c412118e1c23fef3a1eada4f83ae6e8844fd91986b2e066fc1b0013cdd9ae"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:8fd6e191b92a10310f5a6cfe10d6f839d79d192fb02480bda325286bd1c7b385"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:e2961b05f9c04a53da8bfc72f1910b6aec7205fcf3ac9c036d24619979bbee4b"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux2014_i686.whl", hash = "sha256:b38a96b3eed8edc515b38257f03216f382c4389d022a8834667e2bc63c0c0c31"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:c1a70c51da9fa95bd75c167edb2eb3f3c4d27bc4ddd29e588f21649d014ec0b7"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux2014_s390x.whl", hash = "sha256:8a06a0c02f5606330e8f2e2f3b7949877ca7e4024fa2bff5a4506bec66c49ec7"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux2014_x86_64.whl", hash = "sha256:6c2216d8b6a6d019c6f4b1ad55f890e5e77eb089309ffc05b6911c09349e7474"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eac0a143ef4f28f49670bf89cb15847eb80b375d55eba401ca2f777cd425f338"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:08fc250b5552ee97ceeae0f52d8b04f360291285fc7437f13daa516ce38fdbc6"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704d939656e21b073bfcddd7228b29e0e8a93dd27b54240eaafc0b9a631629a6"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1074f1a6f23e28b983c96142f2d45be03ec55d93035b471c26889a7ad2365db3"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b16250238de8dafca225647608dddc7bbb5dce3dd53b4d8e63c1cc287394c2f"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7761cacb8745093062695b11574effea69db636c2fd0a9269a1f0183712927b4"},
{file = "pymongo-4.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:fd7bb378d82b88387dc10227cfd964f6273eb083e05299e9b97cbe075da12d11"},
{file = "pymongo-4.3.3-cp39-cp39-win32.whl", hash = "sha256:dc24d245026a72d9b4953729d31813edd4bd4e5c13622d96e27c284942d33f24"},
{file = "pymongo-4.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:fc28e8d85d392a06434e9a934908d97e2cf453d69488d2bcd0bfb881497fd975"},
{file = "pymongo-4.3.3.tar.gz", hash = "sha256:34e95ffb0a68bffbc3b437f2d1f25fc916fef3df5cdeed0992da5f42fae9b807"},
]
[package.dependencies]
dnspython = ">=1.16.0,<3.0.0"
[package.extras]
aws = ["pymongo-auth-aws (<2.0.0)"]
encryption = ["pymongo-auth-aws (<2.0.0)", "pymongocrypt (>=1.3.0,<2.0.0)"]
gssapi = ["pykerberos"]
ocsp = ["certifi", "pyopenssl (>=17.2.0)", "requests (<3.0.0)", "service-identity (>=18.1.0)"]
snappy = ["python-snappy"]
zstd = ["zstandard"]
[[package]]
name = "python-dateutil"
version = "2.8.2"
description = "Extensions to the standard Python datetime module"
category = "main"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
files = [
{file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"},
{file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"},
]
[package.dependencies]
six = ">=1.5"
[[package]]
name = "pytz"
version = "2022.7.1"
description = "World timezone definitions, modern and historical"
category = "main"
optional = false
python-versions = "*"
files = [
{file = "pytz-2022.7.1-py2.py3-none-any.whl", hash = "sha256:78f4f37d8198e0627c5f1143240bb0206b8691d8d7ac6d78fee88b78733f8c4a"},
{file = "pytz-2022.7.1.tar.gz", hash = "sha256:01a0681c4b9684a28304615eba55d1ab31ae00bf68ec157ec3708a8182dbbcd0"},
]
[[package]]
name = "scipy"
version = "1.10.1"
description = "Fundamental algorithms for scientific computing in Python"
category = "main"
optional = false
python-versions = "<3.12,>=3.8"
files = [
{file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"},
{file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"},
{file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"},
{file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"},
{file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"},
{file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"},
{file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"},
{file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"},
{file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"},
{file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"},
{file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"},
{file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"},
{file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"},
{file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"},
{file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"},
{file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"},
{file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"},
{file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"},
{file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"},
{file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"},
{file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"},
]
[package.dependencies]
numpy = ">=1.19.5,<1.27.0"
[package.extras]
dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"]
doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"]
test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "six"
version = "1.16.0"
description = "Python 2 and 3 compatibility utilities"
category = "main"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
files = [
{file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
[[package]]
name = "uncertainties"
version = "3.1.7"
description = "Transparent calculations with uncertainties on the quantities involved (aka error propagation); fast calculation of derivatives"
category = "main"
optional = false
python-versions = "*"
files = [
{file = "uncertainties-3.1.7-py2.py3-none-any.whl", hash = "sha256:4040ec64d298215531922a68fa1506dc6b1cb86cd7cca8eca848fcfe0f987151"},
{file = "uncertainties-3.1.7.tar.gz", hash = "sha256:80111e0839f239c5b233cb4772017b483a0b7a1573a581b92ab7746a35e6faab"},
]
[package.dependencies]
future = "*"
[package.extras]
all = ["nose", "numpy", "sphinx"]
docs = ["sphinx"]
optional = ["numpy"]
tests = ["nose", "numpy"]
[metadata]
lock-version = "2.0"
python-versions = ">3.10,< 3.12"
content-hash = "aaad37b7d989f5285689b9e2192360da2b496be23cf41eb128e7e616e07a203e"

33
pyproject._toml Normal file
View File

@@ -0,0 +1,33 @@
[build-system]
requires = ["flit_core>=3.4"]
build-backend = "flit_core.buildapi"
[project]
name = "paveit"
version = "0.0.1"
authors = [
{ name="Example Author", email="author@example.com" },
]
description = "A small example package"
#readme = "README.md"
requires-python = ">=3.9"
classifiers = [
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
]
#[project.urls]
#"Homepage" = "https://github.com/pypa/sampleproject"
#"Bug Tracker" = "https://github.com/pypa/sampleproject/issues"
######
#[tool.poetry.dependencies]
#python = ">3.10,< 3.12"
#lmfit = "~1.1.0"
#pandas = "~1.5.3"
#numpy = "~1.24.2"
#scipy = "~1.10.0"
#mongoengine = "~0.26.0"

30
setup.cfg Normal file
View File

@@ -0,0 +1,30 @@
[metadata]
name = paveit
description = Analysis Pavment Test Data
author = Markus Clauß
author_email = markus.clauss@tu-dresden.de
[options]
packages = find:
python_requires = >=3.9
setup_requires = setuptools_scm
install_requires =
lmfit
pandas
numpy
scipy
matplotlib
seaborn
mongoengine
[options.packages.find]
where=src
[rstcheck]
report=warning
ignore_substitutions=release
ignore_roles=scipydoc,numpydoc
ignore_directives=autoclass,autodoc,autofunction,automethod,jupyter-execute,math
[flake8]
ignore = E121,E123,E126,E226,W503,W504,E501,E731

6
setup.py Normal file
View File

@@ -0,0 +1,6 @@
#!/usr/bin/env python
import setuptools
if __name__ == "__main__":
setuptools.setup()

4
src/paveit/__init__.py Normal file
View File

@@ -0,0 +1,4 @@
# main __init__.py
from .analysis import *
from .helper import *
from .labtest import *

View File

@@ -0,0 +1,9 @@
from .regression import *
__all__ = [
# regession models
"fit_cos_simple",
"fit_cos",
#helper functions
"fit_cos_eval",
]

View File

@@ -0,0 +1,159 @@
import lmfit as lm
import numpy as np
import scipy.special as sf
from scipy.optimize import curve_fit
def cosfunc(t, A, w, p, c, e):
"""
definition of the sin function
"""
return A * np.cos(2 * np.pi * w * t + p) + e * t + c
def fit_cos_eval(x, par):
"""
par: dict
fitting results
"""
ys = cosfunc(x, par['amp'], par['freq'], par['phase'], par['offset'],
par['slope'])
return ys
def regression_sine_fft():
"""
fast fourier transformation for sine data
"""
return []
def fit_cos_simple(x, y, freq=10.0):
"""
simple sine regression
x: vector or list
y: vector or list
freq: float
initial frequency of regression analysis
"""
tt = np.array(x)
yy = np.array(y)
guess_offset = np.mean(yy)
offset_b = 0.4 * abs(guess_offset)
guess_amp = abs(np.max(yy) - np.min(yy)) / 2.0
param_bounds = ([
0.3 * guess_amp, 0.99 * freq, -np.inf, guess_offset - offset_b, -np.inf
], [1.3 * guess_amp, 1.01 * freq, np.inf, guess_offset + offset_b, np.inf])
popt, pcov = curve_fit(cosfunc, tt, yy, bounds=param_bounds)
A, w, p, c, e = popt
return {
"amp": A,
"freq": w,
"phase": p,
"offset": c,
"slope": e,
}
def fit_cos(x, y, freq=10.0, constfreq=False):
"""
sine regression
x: vector or list
y: vector or list
freq: float
initial frequency of regression analysis
"""
# step 1
res_step1 = fit_cos_simple(x, y, freq=freq)
# step 2: lmfit
mod = lm.models.Model(cosfunc)
mod.set_param_hint(
'A',
value=res_step1['amp'],
#min=res_step1['amp'] - 0.5 * abs(res_step1['amp']),
#max=res_step1['amp'] + 0.5 * abs(res_step1['amp'])
)
mod.set_param_hint(
'w',
value=freq,
vary=not constfreq,
#min=freq - 0.1 * freq,
#max=freq + 0.1 * freq,
)
mod.set_param_hint('p', value=res_step1['phase'], vary=True)
mod.set_param_hint('c', value=res_step1['offset'],
vary=True) #, min = -0.5, max = 0.5)
mod.set_param_hint('e', value=res_step1['slope'], vary=True)
parms_fit = [
mod.param_hints['A']['value'], mod.param_hints['w']['value'],
mod.param_hints['p']['value'], mod.param_hints['c']['value'],
mod.param_hints['e']['value']
]
abweichung = []
chis = []
chis_red = []
results = []
r2 = []
methods = ['leastsq', 'powell']
dof = len(y) - len(parms_fit)
for method in methods:
result = mod.fit(y, t=x, method=method, verbose=False)
r2temp = 1 - result.residual.var() / np.var(y)
# r2temp = result.redchi / np.var(yfit, ddof=2)
if r2temp < 0.:
r2temp = 0
r2.append(r2temp)
chi = result.chisqr
chis_red.append(result.redchi)
abweichung.append(sf.gammaincc(dof / 2., chi / 2))
chis.append(chi)
results.append(result)
res = {}
best = np.nanargmax(r2)
res[f'amp'] = results[best].best_values['A']
res[f'freq'] = results[best].best_values['w']
res[f'phase'] = results[best].best_values['p']
res[f'offset'] = results[best].best_values['c']
res[f'slope'] = results[best].best_values['e']
res[f'r2'] = r2[best]
return res

View File

@@ -0,0 +1,6 @@
from .filehasher import calc_hash_of_bytes
from .minio import get_minio_client_archive, get_minio_client_processing
__all__ = ['get_minio_client_archive', 'get_minio_client_processing',
'calc_hash_of_bytes'
]

View File

@@ -0,0 +1,22 @@
import hashlib
from io import BytesIO
def calc_hash_of_bytes(buf: BytesIO):
""" calculate the hash of the file """
algo = hashlib.sha1()
buffer_size = 65536
buffer_size = buffer_size * 1024 * 1024
while True:
data = buf.read(buffer_size)
if not data:
break
algo.update(data)
hex = algo.hexdigest()
return hex

View File

@@ -0,0 +1,40 @@
import os
from minio import Minio
def get_minio_client_processing(bucket_name = 'processing'):
client = Minio(
os.environ["MINIO_URL"],
access_key=os.environ["MINIO_ACCESS_KEY"],
secret_key=os.environ["MINIO_SECRET_KEY"],
secure=False
)
found = client.bucket_exists(bucket_name)
if not found:
client.make_bucket(bucket_name)
else:
pass
return client
def get_minio_client_archive(bucket_name = 'archive'):
client = Minio(
os.environ["MINIO_ARCHIVE_URL"],
access_key=os.environ["MINIO_ARCHIVE_ACCESS_KEY"],
secret_key=os.environ["MINIO_ARCHIVE_SECRET_KEY"],
secure=False
)
found = client.bucket_exists(bucket_name)
if not found:
client.make_bucket(bucket_name)
else:
pass
return client

View File

@@ -0,0 +1,6 @@
from .base import DataSineLoad
from .citt import CITTBase
__all__ = ['DataSineLoad',
'CITTBase'
]

View File

@@ -0,0 +1,90 @@
# coding: utf-8
import io
import pandas as pd
from paveit.helper import calc_hash_of_bytes, get_minio_client_processing
from worker import app, logger
class DataSineLoad():
"""
Base class for lab tests with sine load
"""
def __init__(self, filename:str , metadata: dict):
self.filename = filename
self.metadata = metadata
self._logger = logger
self._logger.info(f'filename s3: {self.filename}, metadata: {self.metadata}')
def _connect_to_s3(self):
self._logger.info('connect to db')
self.__minioClient = get_minio_client_processing()
def _read_from_s3_to_bytesio(self):
self._logger.info('read bytes')
try:
self._connect_to_s3()
response = self.__minioClient.get_object('processing', self.filename)
self.data = response.data
finally:
response.close()
response.release_conn()
self.data = io.BytesIO(self.data)
def _calc_hash_of_bytesio(self):
self.filehash = calc_hash_of_bytes(self.data)
self.data.seek(0)
self._logger.debug(f'Hash of file: {self.filehash}')
def _bytes_to_df(self):
self._logger.debug('convert bytes to pandas.DataFrame')
encoding='utf-8'
self.df = pd.read_csv(self.data, encoding=encoding)
def _calc(self):
self._logger.debug('calc data')
return self.df.mean().mean()
def _archive_binary_data(self):
self._logger.debug('send file to archive')
app.send_task('ArchiveFile', args=[self.filename,
self.metadata,
self.filehash,
'org',
'citt'
],
queue='archive'
)
def run(self):
self._logger.info('run task')
self._read_from_s3_to_bytesio()
self._calc_hash_of_bytesio()
self._bytes_to_df()
res = self._calc()
self._logger.debug(f'results: {res}')
self._archive_binary_data()
return res

192
src/paveit/labtest/citt.py Normal file
View File

@@ -0,0 +1,192 @@
import io
import os
from csv import reader
import numpy as np
import pandas as pd
from paveit.labtest import DataSineLoad
class CITTBase(DataSineLoad):
def _calc(self):
return (self.df.mean().mean(), self.df.max().max())
class CITT_KIT(DataSineLoad):
def _calc(self):
return (self.df.mean().mean(), self.df.max().max())
def _bytes_to_df(self):
logger.debug('convert bytes to pandas.DataFrame')
self.data.seek(0)
with io.TextIOWrapper(self.data, encoding='latin-1') as read_obj:
csv_reader = reader(read_obj, delimiter=';')
read = False
data = []
temp = []
for idx_row, row in enumerate(csv_reader):
if row == ['*****']:
if read == False:
read = True
else:
read = False
data.append(temp)
temp = []
continue
if read:
row = [r.replace(',', '.') for r in row]
temp.append(row)
#convert to pandas
res = []
freqs = [10.0, 5.0, 1.0, 0.1, 10.0]
for idx_data, d in enumerate(data):
t = pd.DataFrame(d[3:])
t.columns = d[1]
freq = freqs[idx_data]
t['f'] = freq
for col in t.columns:
t[col] = pd.to_numeric(t[col])
# add cycle number
dt = 1. / freq
Nmax = int(np.ceil(t['ZEIT'].max() / dt))
N = np.zeros_like(t['ZEIT'])
for i in range(Nmax):
if i == 0:
tmin = 0
tmax = dt
else:
tmax = (i + 1) * dt
tmin = (i) * dt
idx = t[(t['ZEIT'] >= tmin) & (t['ZEIT'] < tmax)].index
N[idx] = i
t['N'] = N
res.append(t)
#remove second 10 Hz
res = pd.concat(res[:-1])
res['T'] = self.temperature
#res = res.sort_values(['f', 'ZEIT'])
#define in class
self.df = res.reset_index()
class CITT_PTMDortmund(DataSineLoad):
def _calc(self):
return (self.df.mean().mean(), self.df.max().max())
def _bytes_to_df(self):
res = []
xl = pd.ExcelFile(self.data)
num_sheets = len(xl.sheet_names)
print(num_sheets)
diameter = []
height = []
for sheetid in range(num_sheets):
temp = pd.read_excel(self.data, sheetid, skiprows=97)
temp = temp.drop(index=0)
#convert data to numerical data
for col in temp.columns:
temp[col] = pd.to_numeric(temp[col])
#read metadata from file
meta = pd.read_excel(self.data, sheetid,
skiprows=1,
nrows=90)
meta = meta[meta.columns[[0, 2]]]
meta = meta.set_index(
meta.columns[0]).to_dict()[meta.columns[1]]
temp['sigma'] = float(meta['Max. Spannung'])
temp['T'] = float(meta['Versuchstemperatur'])
freq = float(meta['Frequenz'])
dt = 1 / freq
temp['f'] = freq
Nfrom = int(meta['Erster Aufzeichnungslastwechsel'])
Nto = int(meta['Letzer Aufzeichnungslastwechsel'])
#add cycle number to dataframe
time_idx = temp['Zeitfolgen'].values
N = np.zeros_like(time_idx)
self._logger.debug(len(N))
self._logger.info(f'cycles from {Nfrom} to {Nto}')
#BUG: Ist in Messdatei falsch definiert und wird von PTM angepasst. '''
#for cycle in range(Nfrom, Nto+1):
for cycle in range(10):
# time window
tmin = (cycle) * dt
tmax = (cycle + 1) * dt
#filter data
idx = temp[(time_idx >= tmin)
& (time_idx < tmax)].index
#FIX: siehe bug oben
if any(idx)>=500:
idx = idx[idx<500]
#set cycle number
N[idx] = cycle
temp['N'] = N
# add diameter and height to list
diameter.append(float(meta['Durchmesser (mm)']))
height.append(float(meta['Länge (mm)']))
#append data to final dataframe
res.append(temp)
#concat all parts to single dataframe
res = pd.concat(res)
# add data from speciment to metadata
if not 'diameter' in self.metadata:
self.metadata['diameter'] = np.mean(diameter)
if not 'height' in self.metadata:
self.metadata['height'] = np.mean(height)
#define in class
self.df = res.reset_index()
# log infos
logger.debug(self.metadata)
logger.debug(self.df.head())

View File

@@ -0,0 +1,683 @@
import os
import lmfit as lm
import numpy as np
import pandas as pd
from paveit_worker.libs.labtests.base import DataSineLoad
#import scipy.fft as sfft
#from pytestpavement.labtests.base import DataSineLoad
#from pytestpavement.models.data import DataSheartest
#from pytestpavement.models.sheartest import DynamicShearTestExtension
class ShearTest(DataSineLoad):
"""
Dynamic Shear Bounding Test
"""
def __init__(self,
fname: str,
debug: bool = False,
gap_width: float = 1.0,
roundtemperature: bool = True,
archive_file=False,
s3_params: dict = {}):
#set parameter
self.gap_width = gap_width
self.debug = debug
self.file = fname
self.roundtemperature = roundtemperature
self.archive_file = archive_file
self.s3_params = s3_params
# process file
self._run()
def plot_fited_data(self, opath=None, pkname=None, r2min=0.99):
ylabel_dict = {
'F': 'Kraft in N',
's_vert_sum': 'norm. mittlerer Scherweg\n $S_{mittel}$ in mm',
's_piston': 'norm. Kolbenweg\n in mm',
's_vert_1': 'Scherweg\n $S_1$ in mm',
's_vert_2': 'Scherweg\n $S_2$ in mm'
}
columns_analyse = [
'F',
's_vert_sum',
's_vert_1',
's_vert_2',
's_piston',
]
if not (opath is None) & (pkname is None):
showplot = False
opath = os.path.join(opath, pkname, 'raw_data')
if not os.path.exists(opath):
os.makedirs(opath)
else:
showplot = True
for i, fit in self.fit.iterrows():
if not any([fit['r2_F'] < r2min, fit['r2_s_vert_sum'] < r2min]):
continue
data = self.data[int(fit['idx_data'])]
if data is None:
continue
freq = data['f'].unique()[0]
sigma = data['sigma_normal'].unique()[0]
s = data['extension'].unique()[0]
T = data['T'].unique()[0]
fig, axs = plt.subplots(len(columns_analyse),
1,
figsize=(8, len(columns_analyse) * 2),
sharex=True)
for idxcol, col in enumerate(columns_analyse):
x, y = data.index, data[col]
#add fit
f = self.fit.iloc[i]
parfit = {}
for k in ['amp', 'freq', 'phase', 'offset', 'slope']:
parfit[k] = f[f'fit_{k}_{col}']
yreg = fit_cos_eval(x, parfit)
if col in ['s_piston', 's_vert_sum']:
y = y - np.mean(y)
yreg = yreg - np.mean(yreg)
plt.sca(axs[idxcol])
plt.plot(x, y, label='Messdaten')
r2 = np.round(f[f'r2_{col}'], 3)
plt.plot(x,
yreg,
alpha=0.7,
label=f'Regression ($R^2 = {r2}$)')
if not ('F' in col):
s = f['extension']
parline = dict(lw=0.4,
ls='--',
color='lightgrey',
alpha=0.4,
label='Bereich des zul. Scherweges')
plt.axhspan(-s, s, **parline)
if idxcol == len(columns_analyse) - 1:
plt.xlabel('Zeit in s')
plt.ylabel(ylabel_dict[col])
plt.legend()
plt.tight_layout()
if showplot:
plt.show()
break
else:
ofile = f'{T}deg_{sigma}MPa_{freq}Hz_{s}mm'.replace('.', 'x')
ofile = os.path.join(opath, ofile + '.pdf')
plt.savefig(ofile)
plt.close()
class ShearTestExtension(ShearTest):
def runfit(self):
self._fit_data()
def file_in_db(self):
n = DynamicShearTestExtension.objects(filehash=self.filehash).count()
if n > 0:
return True
else:
return False
def save(self, material1, material2, bounding, meta: dict):
for i, fit in self.fit.iterrows():
data = self.data[int(fit['idx_data'])]
#check if data in db
n = DynamicShearTestExtension.objects(
f=fit['f'],
sigma_normal=fit['sigma_normal'],
T=fit['T'],
extension=fit['extension'],
material1=material1,
material2=material2,
bounding=bounding,
filehash=self.filehash,
).count()
if n > 0: continue
# save fit
values = {}
for col in ['F', 's_vert_1', 's_vert_2', 's_vert_sum']:
values[f'fit_amp_{col}'] = fit[f'fit_amp_{col}']
values[f'fit_freq_{col}'] = fit[f'fit_freq_{col}']
values[f'fit_phase_{col}'] = fit[f'fit_phase_{col}']
values[f'fit_offset_{col}'] = fit[f'fit_offset_{col}']
values[f'fit_slope_{col}'] = fit[f'fit_slope_{col}']
values[f'r2_{col}'] = fit[f'r2_{col}']
values.update(meta)
try:
r = DynamicShearTestExtension(
#metadata
f=fit['f'],
sigma_normal=fit['sigma_normal'],
T=fit['T'],
extension=fit['extension'],
filehash=self.filehash,
material1=material1,
material2=material2,
bounding=bounding,
#results
stiffness=fit['G'],
#
**values).save()
#save raw data
rdata = DataSheartest(
result_id=r.id,
time=data.index.values,
F=data['F'].values,
N=data['N'].values,
s_vert_1=data['s_vert_1'].values,
s_vert_2=data['s_vert_2'].values,
s_vert_sum=data['s_vert_sum'].values,
s_piston=data['s_piston'].values,
).save()
except:
print('error saving data')
raise
rdata.delete()
if self.archive_file:
mclient = MinioClient(self.s3_params['S3_URL'],
self.s3_params['S3_ACCESS_KEY'],
self.s3_params['S3_SECRET_KEY'],
bucket=str(meta['org_id']))
extension = os.path.splitext(self.file)[-1]
ofilename = self.filehash + extension
outpath = 'sheartest'
metadata_s3 = {
'project_id': str(meta['project_id']),
'user_id': str(meta['user_id']),
'filename': os.path.split(self.file)[-1],
'speciment': meta['speciment_name']
}
mclient.compress_and_upload_file(self.file,
ofilename,
outpath=outpath,
content_type="application/raw",
metadata=metadata_s3)
def _set_parameter(self):
self.split_data_based_on_parameter = [
'T', 'sigma_normal', 'f', 'extension'
]
self.col_as_int = ['N']
self.col_as_float = ['T', 'F', 'f', 's_vert_sum']
self.val_col_names = ['time', 'T', 'f', 'N', 'F', 's_vert_sum']
# Header names after standardization; check if exists
self.val_header_names = ['speciment_diameter']
self.columns_analyse = [
'F', 's_vert_sum', 's_vert_1', 's_vert_2', 's_piston'
]
self.number_of_load_cycles_for_analysis = 5
def _calc_missiong_values(self):
cols = self.data.columns
for c in ['vert']:
if not f's_{c}_sum' in cols:
self.data[f's_{c}_sum'] = self.data[[f's_{c}_1', f's_{c}_2'
]].sum(axis=1).div(2.0)
def _fit_data(self):
self.fit = []
for idx_data, data in enumerate(self.data):
if data is None: continue
data.index = data.index - data.index[0]
res = {}
res['idx_data'] = int(idx_data)
# Fitting
freq = float(np.round(data['f'].mean(), 4))
if (self.debug):
sigma_normal = np.round(data['sigma_normal'].mean(), 3)
T = np.round(data['T'].mean(), 3)
for idxcol, col in enumerate(self.columns_analyse):
if not col in data.columns: continue
x = data.index.values
y = data[col].values
# Fourier Transformation
"""
dt = np.diff(x).mean() #mean sampling rate
n = len(x)
res[f'psd_{col}'] = sfft.rfft(y) #compute the FFT
res[f'freq_{col}'] = sfft.rfftfreq(n, dt)
"""
res_fit = fit_cos(x, y, freq=freq, constfreq=True)
res[f'r2_{col}'] = res_fit['r2']
res[f'fit_amp_{col}'] = res_fit['amp']
res[f'fit_freq_{col}'] = res_fit['freq']
res[f'fit_phase_{col}'] = res_fit['phase']
res[f'fit_offset_{col}'] = res_fit['offset']
res[f'fit_slope_{col}'] = res_fit['slope']
## Schersteifigkeit berechnen
deltaF = res['fit_amp_F']
deltaS = res['fit_amp_s_vert_sum']
A = np.pi * self.meta['speciment_diameter']**2 / 4
tau = deltaF / A
gamma = deltaS / self.gap_width
res['G'] = tau / gamma
#metadaten
for c in ['T', 'extension', 'sigma_normal', 'f']:
res[c] = data[c][0]
self.fit.append(res)
if (self.debug) & (len(self.fit) > 5):
break
self.fit = pd.DataFrame.from_records(self.fit)
def plot_results(self, opath=None, pkname=None, r2min=0.96):
if not (opath is None) & (pkname is None):
showplot = False
opath = os.path.join(opath, pkname)
if not os.path.exists(opath):
os.makedirs(opath)
else:
showplot = True
dfplot = self.fit.copy()
for col in ['extension', 'fit_amp_s_vert_sum']:
dfplot[col] = dfplot[col].mul(1000)
fig, ax = plt.subplots()
xticks = list(dfplot['extension'].unique())
df = dfplot
df = df[(df['r2_F'] >= r2min) & (df['r2_s_vert_sum'] >= r2min)]
sns.scatterplot(
data=df,
x='fit_amp_s_vert_sum',
y='G',
hue='T',
ax=ax,
alpha=0.7,
#size=150,
size="G",
sizes=(50, 160),
edgecolor='k',
palette='muted',
zorder=10)
df = dfplot
df = df[(df['r2_F'] < r2min) & (df['r2_s_vert_sum'] < r2min)]
if not df.empty:
sns.scatterplot(data=df,
x='fit_amp_s_vert_sum',
y='G',
facecolor='grey',
alpha=0.5,
legend=False,
zorder=1,
ax=ax)
ax.set_xlabel(r'gemessene Scherwegamplitude in $\mu m$')
ax.set_ylabel(r'Scherseteifigkeit in MPa/mm')
ax.set_xticks(xticks)
ax.grid()
if not showplot:
ofile = os.path.join(opath, 'shearstiffness.pdf')
plt.savefig(ofile)
plt.show()
def plot_stats(self, opath=None, pkname=None, r2min=0.96):
if not (opath is None) & (pkname is None):
showplot = False
opath = os.path.join(opath, pkname)
if not os.path.exists(opath):
os.makedirs(opath)
else:
showplot = True
dfplot = self.fit.copy()
for col in ['extension', 'fit_amp_s_vert_sum']:
dfplot[col] = dfplot[col].mul(1000)
#r2
df = self.fit
fig, axs = plt.subplots(1, 2, sharey=True, sharex=True)
parscatter = dict(palette='muted', alpha=0.7, edgecolor='k', lw=0.3)
# r2
ax = axs[0]
sns.scatterplot(data=df,
x='fit_amp_s_vert_sum',
y='r2_F',
hue='T',
ax=ax,
**parscatter)
ax.set_ylabel('Bestimmtheitsmaß $R^2$')
ax.set_title('Kraft')
ax = axs[1]
sns.scatterplot(data=df,
x='fit_amp_s_vert_sum',
y='r2_s_vert_sum',
hue='T',
legend=False,
ax=ax,
**parscatter)
ax.set_ylabel('$R^2$ (S_{mittel})')
ax.set_title('mittlerer Scherweg')
for ax in axs.flatten():
ax.grid()
ax.set_xlabel(r'gemessene Scherwegamplitude in $\mu m$')
plt.tight_layout()
if not showplot:
ofile = os.path.join(opath, 'stats_r2.pdf')
plt.savefig(ofile)
plt.show()
class ShearTestExtensionLaborHart(ShearTestExtension):
def _define_units(self):
self.unit_F = 1 / 1000.0 #N
self.unit_t = 1 / 1000. #s
def _set_units(self):
#for col in ['F']:
# self.data[col] = self.data[col].mul(self.unit_F)
for col in ['time']:
self.data[col] = self.data[col].mul(self.unit_t)
return True
def _read_data(self):
"""
read data from Labor Hart
"""
# parameter
encoding = 'latin-1'
skiprows = 14
hasunits = True
splitsign = ':;'
# metadata from file
meta = {}
with open(self.file, 'r', encoding=encoding) as f:
count = 0
for line in f:
count += 1
#remove whitespace
linesplit = line.strip()
linesplit = linesplit.split(splitsign)
if len(linesplit) == 2:
meta[linesplit[0]] = linesplit[1]
if count >= skiprows:
break
# data
data = pd.read_csv(self.file,
encoding=encoding,
skiprows=skiprows,
decimal=',',
sep=';')
## add header to df
with open(self.file, 'r', encoding=encoding) as f:
count = 0
for line in f:
count += 1
if count >= skiprows:
break
head = line.split(';')
data.columns = head
#clean data
data = data.dropna(axis=1)
#define in class
self.meta = meta
self.data = data
return True
def _standardize_meta(self):
keys = list(self.meta.keys())
for key in keys:
if any(map(key.__contains__, ['Probenbezeichnung'])):
self.meta['speciment'] = self.meta.pop(key)
elif any(map(key.__contains__, ['Datum/Uhrzeit'])):
self.meta['datetime'] = self.meta.pop(key)
try:
self.meta['datetime'] = pd.to_datetime(
self.meta['datetime'])
except:
pass
elif any(map(key.__contains__, ['Probenhöhe'])):
self.meta['speciment_height'] = float(
self.meta.pop(key).replace(',', '.'))
elif any(map(key.__contains__, ['Probendurchmesser'])):
self.meta['speciment_diameter'] = float(
self.meta.pop(key).replace(',', '.'))
elif any(map(key.__contains__, ['Solltemperatur'])):
self.meta['temperature'] = float(
self.meta.pop(key).replace(',', '.'))
elif any(map(key.__contains__, ['Prüfbedingungen'])):
self.meta['test_version'] = self.meta.pop(key)
elif any(map(key.__contains__, ['Name des VersAblf'])):
self.meta['test'] = self.meta.pop(key)
elif any(map(key.__contains__, ['Prüfer'])):
self.meta['examiner'] = self.meta.pop(key)
return True
def _standardize_data(self):
colnames = list(self.data.columns)
for i, col in enumerate(colnames):
if col == 'TIME':
colnames[i] = 'time'
#set values
elif col == 'Sollwert Frequenz':
colnames[i] = 'f'
elif col == 'SollTemperatur':
colnames[i] = 'T'
elif col == 'Max Scherweg':
colnames[i] = 'extension'
elif col == 'Sollwert Normalspannung':
colnames[i] = 'sigma_normal'
elif col == 'Impulsnummer':
colnames[i] = 'N'
# measurements
elif col == 'Load':
colnames[i] = 'F'
elif col == 'Position':
colnames[i] = 's_piston'
elif col == 'VERTIKAL Links':
colnames[i] = 's_vert_1'
elif col == 'VERTIKAL Rechts':
colnames[i] = 's_vert_2'
elif col == 'HORIZONTAL links':
colnames[i] = 's_hor_1'
elif col == 'HOIZONTAL Rechts':
colnames[i] = 's_hor_2'
self.data.columns = colnames
class ShearTestExtensionTUDresdenGeosys(ShearTestExtension):
def _define_units(self):
self.unit_S = 1 / 1000.0 #N
def _set_units(self):
for col in [
's_vert_sum', 's_vert_1', 's_vert_2', 's_piston', 'extension'
]:
self.data[col] = self.data[col].mul(self.unit_S)
#convert internal units to global
f = np.mean([0.9 / 355, 0.6 / 234.0, 0.3 / 116.0])
self.data['sigma_normal'] = self.data['sigma_normal'].mul(f).apply(
lambda x: np.round(x, 1))
return True
def _read_data(self):
"""
read data from Labor Hart
"""
# parameter
encoding = 'latin-1'
skiprows = 14
hasunits = True
splitsign = ':;'
head, data = read_geosys(self.file, '015')
#define in class
self.meta = head
self.data = data
return True
def _standardize_meta(self):
keys = list(self.meta.keys())
for key in keys:
if key == 'd':
self.meta['speciment_diameter'] = self.meta.pop(key)
return True
def _standardize_data(self):
colnames = list(self.data.columns)
for i, col in enumerate(colnames):
#set values
if col == 'soll temperature':
colnames[i] = 'T'
elif col == 'soll extension':
colnames[i] = 'extension'
elif col == 'soll sigma':
colnames[i] = 'sigma_normal'
elif col == 'soll frequency':
colnames[i] = 'f'
elif col == 'Number of vertical cycles':
colnames[i] = 'N'
# measurements
elif col == 'vertical load from hydraulic pressure':
colnames[i] = 'F'
elif col == 'vertical position from hydraulic pressure':
colnames[i] = 's_piston'
elif col == 'Vertical position from LVDT 1':
colnames[i] = 's_vert_1'
elif col == 'Vertical position from LVDT 2':
colnames[i] = 's_vert_2'
self.data.columns = colnames